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Basic Electronics for Scientists and Engineers

Ideal for a one-semester course, this concise textbook covers basic
electronics for undergraduate students in science and engineering.

Beginning with basics of general circuit laws and resistor circuits to ease
students into the subject, the textbook then covers a wide range of topics,
from passive circuits through to semiconductor-based analog circuits and
basic digital circuits. Using a balance of thorough analysis and insight,
readers are shown how to work with electronic circuits and apply the
techniques they have learnt. The textbook’s structure makes it useful as a
self-study introduction to the subject. All mathematics is kept to a suitable
level, and there are several exercises throughout the book. Solutions for
instructors, together with eight laboratory exercises that parallel the text, are
available online at www.cambridge.org/Eggleston.

Dennis L. Eggleston is Professor of Physics at Occidental College, Los
Angeles, where he teaches undergraduate courses and labs at all levels
(including the course on which this textbook is based). He has also
established an active research program in plasma physics and, together with
his undergraduate assistants, he has designed and constructed three plasma
devices which form the basis for the research program.
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Preface

A professor of mine once opined that the best working experimentalists tended to
have a good grasp of basic electronics. Experimental data often come in the form of
electronic signals, and one needs to understand how to acquire and manipulate such
signals properly. Indeed, in graduate school, everyone had a story about a budding
scientist who got very excited about some new result, only to later discover that the
result was just an artifact of the electronics they were using (or misusing!). In addition,
most research labs these days have at least a few homemade circuits, often because
the desired electronic function is either not available commercially or is prohibitively
expensive. Other anecdotes could be added, but these suffice to illustrate the utility of
understanding basic electronics for the working scientist.

On the other hand, the sheer volume of information on electronics makes learning the
subject a daunting task. Electronics is a multi-hundred billion dollar a year industry, and
new products of ever-increasing specialization are developed regularly. Some introduc-
tory electronics texts are longer than introductory physics texts, and the print catalog for
one national electronic parts distributor exceeds two thousand pages (with tiny fonts!).

Finally, the undergraduate curriculum for most science and engineering majors
(excepting, of course, electrical engineering) does not have much space for the study
of electronics. For many science students, formal study of electronics is limited to
the coverage of voltage, current, and passive components (resistors, capacitors, and
inductors) in introductory physics. A dedicated course in electronics, if it exists, is
usually limited to one semester.

This text grew out of my attempts to deal with this three-fold challenge. It is based
on my notes for a one-semester course on electronics I have taught for many years in
the Physics Department of Occidental College. The students in the course are typically
sophomore, junior, or senior students majoring in physics or pre-engineering, with
some from the other sciences and mathematics. The students have usually had at least
two introductory physics courses and two semesters of calculus.

The primary challenge of such a course is to select the topics to include. My choices
for this text have been guided by several principles: I wanted the text to be a rigorous,
self-contained, one-semester introduction to basic analog and digital electronics. It
should start with basic concepts and at least touch upon the major topics. I also let
the choice of material be guided by those topics I thought were fundamental or have
found useful during my career as a researcher in experimental plasma physics. Finally,
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I wanted the text to emphasize learning how to work with electronics through analysis
rather than copying examples.

Chapters 1 and 2 start with basic concepts and cover the three passive components.
Key concepts such as Thevenin’s theorem, time- and frequency-domain analysis, and
complex impedances are introduced. Chapter 3 uses the band theory of solids to explain
semiconductor diode operation and shows how the diode and its cousins can be used in
circuits. The use of the load line to solve the transcendental equations arising from the
diode’s non-linear I–V characteristic is introduced, as well as common approximation
techniques. The fundamentals of power supply construction are also introduced in this
chapter.

Bipolar junction transistors and field-effect transistors are covered in Chapters 4
and 5. Basic switching and amplifier circuits are analyzed and transistor AC equivalents
are used to derive the voltage and current gain as well as the input and output impedance
of the amplifiers. A discussion of feedback in Chapter 4 leads into the study of
operational amplifiers in Chapter 6. Linear and non-linear circuits are analyzed and the
limitations of real op-amps detailed.

Several examples of relaxation and sinusoidal oscillators are studied in Chapter 7,
with time-domain analysis used for the former and frequency-domain analysis used for
the latter. Amplitude- and frequency-modulation are introduced as oscillator applica-
tions. Finally, a number of basic digital circuits and devices are discussed in Chapter 8.
These include the logic gates, flip-flops, counters, shift-registers, A/D and D/A con-
verters, multiplexers, and memory chips. Although the digital universe is much larger
than this (and expanding!), these seem sufficient to give a laboratory scientist a working
knowledge of this universe and lay the foundation for further study.

Exercises are given at the end of each chapter along with texts for further study.
I recommend doing all of the exercises. While simple plug-in problems are avoided,
I have found that most students will rise to the challenge of applying the techniques
studied in the text to non-trivial problems. Answers to some of the problems are given
in Appendix A, and a solution manual is available to instructors.

At Occidental this course is accompanied by a laboratory, and I enthusiastically
recommend such a structure. In addition to teaching a variety of laboratory skills,
an instructional laboratory in electronics allows the student to connect the analytical
approach of the text to the real world. A set of laboratory exercises that I have used is
available from the publisher.

The original manuscript was typeset using LaTeX and the figures constructed using
PSTricks: Postscript macros for Generic TeX by Timothy Van Zandt and M4 Macros
for Electric Circuit Diagrams in Latex Documents by Dwight Aplevich. I am indebted
to the makers of these products and would not have attempted this project without them.

Dennis L. Eggleston Los Angeles, California, USA
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“Basic Electronics for Scientists and Engineers by Dennis Eggleston is an example of
how the most important material in the introduction to electronics can be presented
within a one-semester time frame. The text is written in a nice logical sequence and is
beneficial for students majoring in all areas of the Natural Science. In addition, many
examples and detailed introduction of all equations allows this course to be taught
to students of different background – sophomores, juniors, and seniors. Overall, the
effort of the author is thrilling and, definitely, this text will be popular among many
instructors and students.”
Anatoliy Glushchenko, Department of Physics and Energy Science, University of
Colorado at Colorado Springs

“This text is an excellent choice for undergraduates majoring in physics. It covers
the basics, running from passive components through diodes, transistors and op-amps
to digital electronics. This makes it self-contained and a one-stop reference for the
student. A brief treatment of the semiconductor physics of silicon devices provides
a good basis for understanding the mathematical models of their behaviour and the
end-of-chapter problems help with the learning process. The concise and sequential
nature of the book makes it easier to teach (and study) from than the venerable but
somewhat overwhelming Art of Electronics by Horowitz and Hill.”
David Hanna, W C Macdonald Professor of Physics, McGill University

“I have been frustrated in the past by my inability to find a suitable book for a one-
semester Electronics course that starts with analog and progresses to basic digital
circuits. Most available books seem to be out of date or aimed at electrical engineers
rather than scientists. Eggleston’s book is exactly what I was looking for – a basic
course ideal for science students needing a practical introduction to electronics. Written
concisely and clearly, the book emphasizes many practical applications, but with
sufficient theoretical explanation so that the results don’t simply appear out of thin air.”
Susan Lehman, Clare Boothe Luce Associate Professor and Chair of Physics, The
College of Wooster
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1 Basic concepts and resistor circuits

1.1 Basics

We start our study of electronics with definitions and the basic laws that apply to
all circuits. This is followed by an introduction to our first circuit element – the
resistor.

In electronics, we are interested in keeping track of two basic quantities: the
currents and voltages in a circuit. If you can make these quantities behave like you
want, you have succeeded.

Current measures the flow of charge past a point in the circuit. The units of
current are thus coulombs per second or amperes, abbreviated as A. In this text we
will use the symbol I or i for current.

As charges move in circuits, they undergo collisions with atoms and lose some of
their energy. It thus takes some work to move charges around a circuit. The work
per unit charge required to move some charge between two points is called the
voltage between those points. (In physics, this work per unit charge is equivalent to
the difference in electrostatic potential between the two points, so the term potential
difference is sometimes used for voltage.) The units of voltage are thus joules per
coulomb or volts, abbreviated V. In this text we will use the symbol V or v for
voltage.

In a circuit, there are sources and sinks of energy. Some sources of energy (or
voltage) include batteries (which convert chemical energy to electrical energy), gen-
erators (mechanical to electrical energy), solar cells (radiant to electrical energy),
and power supplies and signal generators (electrical to electrical energy). All other
electrical components are sinks of energy.

Let’s see how this works. The simplest circuit will involve one voltage source
and one sink, with connecting wires as shown in Fig. 1.1. By convention, we denote
the two sides of the voltage source as + and −. A positive charge moving from the
− side to the + side of the source gains energy. Thus we say that the voltage across
the source is positive. When the circuit is complete, current flows out of the + side
of the source, as shown. The voltage across the component is negative when we



2 Basic concepts and resistor circuits

Voltage Source Component

+

–

I

Figure 1.1 A simple generic
circuit.

Node
I1

I2

I3 Figure 1.2 Example of Kirchoff’s Current Law.

cross it in the direction of the current. We say there is a voltage drop across the
component. Note that while we can speak of the current at any point in the circuit,
the voltage is always between two points. It makes no sense to speak of the voltage
at a point (remember, the voltage is a potential difference).

We can now write down some general rules about voltage and current.

1. The sum of the currents into a node (i.e. any point on the circuit) equals the sum
of the currents flowing out of the node. This is Kirchoff’s Current Law (KCL)
and expresses conservation of charge. For example, in Fig. 1.2, I1 = I2 + I3. If
we use the sign convention that currents into a node are positive and currents
out of a node are negative, then we can express this law in the compact form

node∑
k

Ik = 0 (1.1)

where the sum is over all currents into or out of the node.
2. The sum of the voltages around any closed circuit is zero. This is Kirchoff’s

Voltage Law (KVL) and expresses conservation of energy. In equation form,

loop∑
k

Vk = 0. (1.2)

Here we must use the convention that the voltage across a source is positive
when we move across the source in the direction of the current and the voltage
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V1

V2

V4V3Loop 1 Loop 2

Figure 1.3 Example of Kirchoff’s
Voltage Law.

across a sink is negative when we move across the component in the direction
of the current. If we traverse a source or sink in the direction opposite to the
direction of the current, the signs are reversed. Figure 1.3 gives an example.
Here we introduce the circuit symbol for an ideal battery, labeled with voltage
V1. The top of this symbol represents the positive side of the battery. The current
(not shown) flows up out of the battery, through the component labeled V2 and
down through the components labeled V3 and V4. Looping around the left side
of the circuit in the direction shown gives V1 − V2 − V3 = 0 or V1 = V2 + V3.
Here we take V2 and V3 to be positive numbers and include the sign explicitly.
Going around the right portion of the circuit as shown gives −V3 + V4 = 0
or V3 = V4. This last equality expresses the important result that components
connected in parallel have the same voltage across them.

3. The power P provided or consumed by a circuit device is given by

P = VI (1.3)

where V is the voltage across the device and I is the current through the device.
This follows from the definitions:

VI =
(

work
charge

)(
charge
time

)
= work

time
= power. (1.4)

The units of power are thus joules per second or watts, abbreviated W. This law
is of considerable practical importance since a key part of designing a circuit
is to employ components with the proper power rating. A component with
an insufficient power rating will quickly overheat and fail when the circuit is
operated.

Finally, a word about prefixes and nomenclature. Some common prefixes and
their meanings are shown in Table 1.1. As an example, recall that the unit volts is
abbreviated as V, and amperes or amps is abbreviated as A. Thus 106 volts = 1 MV
and 10−3 amps = 1 mA. Notice that case matters: 1 MA �= 1 mA.

www.electronic07.com



4 Basic concepts and resistor circuits

Table 1.1 Some common prefixes used in
electronics

Multiple Prefix Symbol

1012 tera T
109 giga G
106 mega M
103 kilo k
10−3 milli m
10−6 micro μ

10−9 nano n
10−12 pico p
10−15 femto f

V

I

Slope = 1
R

Figure 1.4 I−V curve for a resistor.

1.2 Resistors

A common way to represent the behavior of a circuit device is the I–V characteristic.
This is a plot of the current I through the device as a function of applied voltage
V across the device. Our first device, the resistor, has the simple linear I–V
characteristic shown in Fig. 1.4. This linear relationship is expressed by Ohm’s
Law:

V = IR. (1.5)

The constant of proportionality, R, is called the resistance of the device and is equal
to one over the slope of the I–V characteristic. The units of resistance are ohms,
abbreviated as �. Any device with a linear I–V characteristic is called a resistor.

The resistance of the device depends only on its physical properties – its size
and composition. More specifically:

R = ρ
L
A

(1.6)
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Table 1.2 The resistivity of some
common electronic materials

Material ρ (10-8 �m)

Silver 1.6
Copper 1.7
Nichrome 100
Carbon 3500

Figure 1.5 Value and tolerance bands on a
resistor.

where ρ is the resistivity, L is the length, and A is the cross-sectional area of the
material. The resistivity of some representative materials is given in Table 1.2.

The interconnecting wires or circuit board paths are typically made of copper
or some other low resistivity material, so for most cases their resistance can be
ignored. If we want resistance in a circuit we will use a discrete device made of
some high resistivity material (e.g., carbon). Such resistors are widely used and
can be obtained in a variety of values and power ratings. The low power rating
resistors typically used in circuits are marked with color coded bands that give the
resistance and the tolerance (i.e., the uncertainty in the resistance value) as shown
schematically in Fig. 1.5.

As shown in the figure, the bands are usually grouped toward one end of the
resistor. The band closest to the end is read as the first digit of the value. The
next band is the second digit, the next band is the multiplier, and the last band is
the tolerance value. The values associated with the various colors are shown in
Table 1.3. For example, a resistor code having colors red, violet, orange, and gold
corresponds to a value of 27 × 103 � ± 5%.

Resistors also come in variable forms. If the variable device has two leads,
it is called a rheostat. The more common and versatile type with three leads is
called a potentiometer or a “pot.” Schematic symbols for resistors are shown in
Fig. 1.6.

One must also select the proper power rating for a resistor. The power rating of
common carbon resistors is indicated by the size of the device. Typical values are
1
8 , 1

4 , 1
2 , 1, and 2 watts.
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Table 1.3 Standard color scheme for resistors

Color Digit Multiplier Tolerance (%)

none 20
silver 0.01 10
gold 0.1 5
black 0 1
brown 1 10
red 2 100 2
orange 3 103

yellow 4 104

green 5 105

blue 6 106

violet 7 107

gray 8
white 9

Resistor Rheostat Potentiometer

Figure 1.6 Schematic symbols for a fixed resistor and two types of variable resistors.

As noted in Eq. (1.3), the power consumed by a device is given by P = VI , but
for resistors we also have the relation V = IR. Combining these we obtain two
power relations specific to resistors:

P = I2R (1.7)

and
P = V 2/R. (1.8)

1.2.1 Equivalent circuit laws for resistors

It is common practice in electronics to replace a portion of a circuit with its
functional equivalent. This often simplifies the circuit analysis for the remaining
portion of the circuit. The following are some equivalent circuit laws for resistors.

1.2.1.1 Resistors in series
Components connected in series are connected in a head-to-tail fashion, thus
forming a line or series of components. When forming equivalent circuits, any

www.electronic07.com
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V
R1

R2

R3

I

V Req

I

Figure 1.7 Equivalent circuit for resistors in series.

number of resistors in series may be replaced by a single equivalent resistor
given by:

Req =
∑

i
Ri (1.9)

where the sum is over all the resistors in series. To see this, consider the circuit
shown in Fig. 1.7. We would like to replace the circuit on the left by the equivalent
circuit on the right. The circuit on the right will be equivalent if the current supplied
by the battery is the same.

By KCL, the current in each resistor is the same. Applying KVL around the
circuit loop and Ohm’s Law for the drop across the resistors, we obtain

V = IR1 + IR2 + IR3

= I(R1 + R2 + R3)

= IReq (1.10)

where
Req = R1 + R2 + R3. (1.11)

This derivation can be extended to any number of resistors in series, hence
Eq. (1.9).

1.2.1.2 Resistors in parallel
Components connected in parallel are connected in a head-to-head and tail-to-tail
fashion. The components are often drawn in parallel lines, hence the name. When
forming equivalent circuits, any number of resistors in parallel may be replaced by
a single equivalent resistor given by:

1
Req

=
∑

i

1
Ri

(1.12)

where the sum is over all the resistors in parallel. To see this, consider the circuit
shown in Fig. 1.8. Again, we would like to replace the circuit on the left by the
equivalent circuit on the right.
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V R1 R2 R3

I I1 I2 I3
V Req

I

Figure 1.8 Equivalent circuit for resistors in parallel.

First, note that KCL requires

I = I1 + I2 + I3. (1.13)

Since the resistors are connected in parallel, the voltage across each one is the
same, and, by KVL is equal to the battery voltage: V = I1R1, V = I2R2, V = I3R3.
Solving these for the three currents and substituting in Eq. (1.13) gives

I = V
R1

+ V
R2

+ V
R3

= V
(

1
R1

+ 1
R2

+ 1
R3

)
= V

Req
(1.14)

where
1

Req
= 1

R1
+ 1

R2
+ 1

R3
. (1.15)

Again, this derivation can be extended to any number of resistors in parallel, hence
Eq. (1.12).

A frequent task is to analyze two resistors in parallel. Of course, for this special
case of Eq. (1.12) we get 1

Req
= 1

R1
+ 1

R2
. It is often more illuminating to write this

as an equation for Req rather than 1
Req

. After some algebra, we get

Req = R1R2

R1 + R2
. (1.16)

This special case is worth memorizing.

Example For the circuit shown in Fig. 1.9, how much current flows through the
20 k� resistor? What must its power rating be?

Solution As we will see, there is more than one way to solve this problem. Here we
use a method that relies on basic electronics reasoning and our resistor equivalent
circuit laws. We want the current through the 20 k� resistor. If we knew the
voltage across this resistor (call this voltage V20k), we could then get the current
from Ohm’s Law. In order to get the voltage across the 20 k� resistor, we need
the voltage across the 10 k� resistor since, by KVL, V20k = 130 − V10k. In order
to get the voltage across the 10 k� resistor, we need to know the current through
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V0 130 V

10 k�

R1

20 k�R4

5 k�R2

5 k�R3

Figure 1.9 Example resistor circuit.

it, which is the same as the current supplied by the battery. Thus, if we can get the
current supplied by the battery we can solve the problem. To get the battery current,
we combine all our resistors into one equivalent resistor. The implementation of
this strategy goes as follows.

1. Combine the two 5 k� series resistors into a 10 k� resistor.
2. This 10 k� resistor is then in parallel with the 20 k� resistor. Combining these

we get (using Eq. (1.16))

Req = R1R2

R1 + R2
= (10 k�)(20 k�)

10 k� + 20 k�
= 6.67 k�. (1.17)

3. This 6.67 k� resistor is then in series with a 10 k� resistor, giving a total
equivalent circuit resistance Req = 16.67 k�.

4. The current supplied by the battery is then

I = V0

Req
= 130 V

16.67 × 103 �
= 7.8 × 10−3 A = 7.8 mA. (1.18)

5. KVL then gives 130 V − (7.8 mA)(10 k�) − V20k = 0. Solving this gives
V20k = 52 V.

6. Ohm’s Law then gives I20k = 52 V
20 k�

= 2.6 mA, which is the solution to the first
part of our problem. As a check, it is comforting to note that this current is less
than the total battery current, as it must be. The remainder goes through the two
5 k� resistors.

7. The power consumed by the 20 k� resistor is P = I2R = (2.6 × 10−3 A)2(2 ×
104 �) = 0.135 W. This is too much for a 1

8 W resistor, so we must use at least
a 1

4 W resistor.
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Vth

Rth

Figure 1.10 Representation of Thevenin’s theorem.

1.2.1.3 Thevenin’s theorem and Norton’s theorem
The third of our equivalent circuit laws, Thevenin’s theorem, is a more general
result that actually includes the first two laws as special cases. The theorem states
that any two-terminal network of sources and resistors can be replaced by a series
combination of a single resistor Rth and voltage source Vth. This is represented
by the example in Fig. 1.10. The sources can include both voltage and current
sources (the current source is described below). A more general version of the
theorem replaces the word resistor with impedance, a concept we will develop in
Chapter 2.

The point of Thevenin’s theorem is that when we connect a component to the
terminals, it is much easier to analyze the circuit on the right than the circuit on the
left. But there is no free lunch – we must first determine the values of Vth and Rth.

Vth is the voltage across the circuit terminals when nothing is connected to the
terminals. This is clear from the equivalent circuit: if nothing is connected to the
terminals, then no current flows in the circuit and there is no voltage drop across
Rth. The voltage across the terminals is thus the same as Vth. In practice, the voltage
across the terminals must be calculated by analyzing the original circuit.

There are two methods for calculating Rth; you can use whichever is easiest.
In the first method, you start by short circuiting all the voltage sources and open
circuiting all the current sources in the original circuit. This means that you replace
the voltage sources by a wire and disconnect the current sources. Now only resistors
are left in the circuit. These are then combined into one resistor using the resistor
equivalent circuit laws. This one resistor then gives the value of Rth. In the second
method, we calculate the current that would flow in the circuit if we shorted (placed
a wire across) the terminals. Call this the short circuit current Isc. Then from the
Thevenin equivalent circuit it is clear that Rth = Vth

Isc
.

There is also a similar result known as Norton’s theorem. This theorem states
that any two-terminal network of sources and resistors can be replaced by a parallel
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Inor Rnor

Figure 1.11 Equivalent circuit of Norton’s theorem.

combination of a single resistor Rnor and current source Inor. This equivalent circuit
is shown in Fig. 1.11.

The current source is usually less familiar that the voltage source, but the two can
be viewed as complements of one another. An ideal voltage source will maintain a
constant voltage across it and will provide whatever current is required by the rest
of the circuit. Similarly, an ideal current source will maintain a constant current
through it while the voltage across it will be set by the rest of the circuit.

Returning now to the equivalent circuit, let’s determine Rnor and Inor. If we short
the terminals, it is clear from the Norton equivalent circuit that all of Inor will pass
through the shorting wire. Thus Inor = Isc. We have seen previously that the voltage
across the terminals when nothing is connected is equal to Vth. From the Norton
equivalent circuit we then see that Vth = InorRnor, so

Rnor = Vth

Inor
= Vth

Isc
= Rth. (1.19)

1.2.2 Applications for resistors

Resistors are probably the most common circuit element and can be used in a
variety of simple circuits. Here are a few examples.

1. Current limiting. Many electronic devices come with operating specifications.
For example, the ubiquitous LED (light emitting diode) typically operates with
a voltage drop of 1.7 V and a current of 20 mA. Suppose you have a 9 V battery
and wish to light the LED. How can you operate the 1.7 V LED with a 9 V
battery? By the discriminating use of a resistor! Consider the circuit in Fig. 1.12.
KVL gives V0 − IR − VLED = 0, where VLED is the voltage across the LED.
We know that V0 = 9 V, VLED = 1.7 V, and we want I = 20 mA for proper
operation. Solving for R gives

R = V0 − VLED

I
= 9 − 1.7 V

20 × 10−3 A
= 365 �. (1.20)

This is an example of using a resistor as a current limiter. Without it, the LED
would burn out immediately.
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V0

R
VLED

I

Figure 1.12 Application of a resistor as a current
limiter.

R1

R2

Vin

Vout

I

Figure 1.13 The ubiquitous voltage divider.

I R1 R2

I1 I2

Figure 1.14 The current divider.

2. Voltage divider. Another very common resistor circuit is shown in Fig. 1.13.
Some voltage Vin is applied to the input and the circuit provides a lower voltage
at the output. The analysis is simple. KVL gives Vin = I(R1 + R2) and Ohm’s
Law gives Vout = IR2. Solving for I from the first equation and substituting in
the second gives

Vout = IR2 =
(

Vin

R1 + R2

)
R2 = Vin

(
R2

R1 + R2

)
(1.21)

where this last form emphasizes that Vout < Vin since R2
R1+R2

< 1. This equation
is used so frequently it is worth memorizing.

3. The current divider circuit is shown in Fig. 1.14. A current source is applied to
two resistors in parallel and we would like to obtain an expression that tells us
how the current is divided between the two. By KCL, I = I1 + I2. Since the
two resistors are in parallel, the voltage across them must be the same. Hence,
I1R1 = I2R2. Solving this latter equation for I2 and plugging into the first gives

I = I1 + I1

(
R1

R2

)
= I1

(
R1 + R2

R2

)
(1.22)

or
I1 =

(
R2

R1 + R2

)
I . (1.23)
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Rs

M

Rm

I

Im

Figure 1.15 Using a resistor to extend the range of
a current meter.

4. Multi-range analog voltmeter/ammeter. In electronics, one frequently has the
need to measure voltage and current. The instrument of choice for many experi-
mentalists is the multimeter, which can measure voltage, current, and resistance.
The analog version of the multimeter uses a simple meter as a display. If you tear
one of these multimeters apart, you find that the meter is a current measuring
device that gives a full scale deflection of the needle for a given, small current,
typically 50 μA. This is fine if you want to measure currents from zero to 50 μA,
but what if you have a larger current to measure, or want to measure a voltage
instead?

Both of these can be accomplished by judicious use of resistors. The circuit in
Fig. 1.15 shows a meter in parallel with a so-called shunt resistor Rs. The physical
meter (within the dotted lines) is represented by an ideal current measuring meter
in series with a resistor Rm. When a current I is applied to the terminals, part
goes through the meter and part through the shunt. The circuit is simply a current
divider, so we have (cf. Eq. (1.22))

I = Im

(
1 + Rm

Rs

)
. (1.24)

A full scale deflection of the meter will always occur when Im = 50 μA, and Rm
is also set at the construction of the meter, but by adjusting the shunt resistance
Rs we can make this full scale deflection occur for any input current I we
choose.

Another simple addition will allow us to use our meter to measure voltage.
Placing a resistor Rs in series with the meter gives the configuration in Fig. 1.16.
It is convenient here to define the voltage Vm = ImRm that will produce a full
scale deflection when applied across the physical meter. This circuit is then seen
to be a voltage divider. Inverting Eq. (1.21) then gives
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Rs

M

Rm

V
Vm

Figure 1.16 Using a resistor to measure voltage with a
current meter.

130 V V0

10 k�

R1

R4 20 k�

R2 5 k�

R3 5 k�

Loop 2 Loop 3

Loop 1

I0

I2

I1

Figure 1.17 The standard method of solving circuit problems.

V = Vm

(
1 + Rs

Rm

)
(1.25)

so by varying Rs we can make the full scale deflection of the meter correspond
to any input voltage.

1.2.3 Techniques for solving circuit problems

We list here three methods for solving circuit problems, and illustrate the use of
these techniques on the same problem that we solved previously using equivalent
circuit laws for resistors. Our goal is to solve for the current through resistor R4 in
Fig. 1.17.

The standard method This method involves assigning currents to each branch of
the circuit and then applying KVL and KCL. In Fig. 1.17 we have assigned currents
I0, I1, and I2. In this case, the application of KCL gives a single equation

I0 = I1 + I2 (1.26)
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but in circuits with more than three branches KCL gives additional relations. Next
we use KVL around the loops indicated in the figure. For Loop 1 we get

V0 − I0R1 − I1R4 = 0 (1.27)

while Loop 2 gives
V0 − I0R1 − I2(R2 + R3) = 0 (1.28)

and finally
−I1R4 + I2(R2 + R3) = 0 (1.29)

for Loop 3. We thus have four equations relating the three unknown currents I0,
I1, and I2 and need to solve for I1. In practice we need only three independent
equations to solve for the currents, but we have given all four here to illustrate the
method. Solving Eq. (1.26) for I2 (one of the currents we are not interested in) and
plugging into Eq. (1.29) gives

−I1R4 + (I0 − I1)(R2 + R3) = 0 (1.30)

and solving Eq. (1.27) for I0 gives

I0 = V0 − I1R4

R1
. (1.31)

Plugging Eq. (1.31) into Eq. (1.30) and solving for I1 gives, after some algebra,

I1 = V0(R2 + R3)

R1R4 + (R1 + R4)(R2 + R3)
. (1.32)

Plugging the circuit values into this equation gives I1 = 2.6 mA, our former
answer.

The mesh loop method Our second method for solving circuit problems is the
mesh loop method. In this method, currents are assigned to the circuit loops rather
than the actual physical branches of the circuit. This is shown in Fig. 1.18 where
we assign current I1 to the outer loop and I2 to the inner loop.

We then move around these loops, applying KVL, but including contributions
from both loop currents. The outer loop then gives

V0 − (I1 + I2)R1 − I1R4 = 0 (1.33)

while the inner loop gives

V0 − (I1 + I2)R1 − I2(R2 + R3) = 0. (1.34)
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V0

R1

R4

R2

R3

I2

I1 Figure 1.18 The mesh loop method of
solving circuit problems.

Note that the resulting set of equations is simpler in this method: two equations in
two unknowns I1 and I2. For this reason the mesh loop method is usually preferable
for more complicated circuits. Furthermore, our equations can be rearranged into
the conventional form of a system of linear algebraic equations. Thus Eq. (1.33)
becomes

(R1 + R4)I1 + R1I2 = V0 (1.35)

while Eq. (1.34) gives

R1I1 + (R1 + R2 + R3)I2 = V0. (1.36)

Students of linear algebra may wish to solve these using Cramer’s Method of
Determinants or with the built-in capabilities of many hand-held calculators (see
Appendix B). The usual brute force method also works: solving Eq. (1.36) for
I2, plugging this into Eq. (1.35), and solving for I1 produces (again, after some
algebra),

I1 = V0(R2 + R3)

(R1 + R4)(R2 + R3) + R1R4
, (1.37)

the same expression obtained with the standard method.

Thevenin’s theorem Finally, we solve this problem by using Thevenin’s theorem.
We form the required two terminal network by removing R4 and taking the two
terminals at the points where R4 was attached. This is shown in Fig. 1.19.

The remaining circuit should look familiar – if we combine R2 and R3 it is the
previously considered voltage divider. Thus

Vth = V0

(
R2 + R3

R1 + R2 + R3

)
= 65 V. (1.38)
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V0

R1
R2

R3
Figure 1.19 First step in solving the problem
using Thevenin’s theorem.

Vth

Rth

R4

Figure 1.20 Last step: re-attach R4 to the Thevenin equivalent
circuit.

Shorting out the battery leaves R1 in parallel with R2 + R3 so

Rth = R1(R2 + R3)

R1 + R2 + R3
= 5 k�. (1.39)

Reattaching R4 then gives the simple circuit of Fig. 1.20 with the current through
R4 given by

I1 = Vth

Rth + R4
= 65 V

25 k�
= 2.6 mA (1.40)

as before.

1.2.4 Input resistance

A common measurement in the electronics lab is the voltage across a compo-
nent. An important fact to keep in mind when making such measurements is that
the measuring instrument becomes part of the circuit. The act of measuring thus
inevitably changes the thing we are trying to measure because we are adding cir-
cuitry to the original circuit. To help us cope with this problem, test instrument
manufacturers specify a quantity called the input resistance Rin (or, as we will see
later, the input impedance). The effect of attaching the instrument is the same as
attaching a resistor with value Rin. To see how this helps, suppose we are mea-
suring the voltage across some resistor R0 in a complicated circuit, as depicted in
Fig. 1.21.
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R0 Rin
voltmeterrest of

complicated
circuit Figure 1.21 Measuring the

voltage across resistor R0 with
a voltmeter.

V 2 V

R120 k�

R220 k� Rin20 k�
voltmeter

Figure 1.22 Measuring the output
of a voltage divider with a voltmeter.

If we know the input resistance of our measuring device we see that the effect
of making the measurement is to replace the original resistor R0 with the parallel
combination of R0 with Rin

R0 → R0 ‖ Rin = R0Rin

R0 + Rin
(1.41)

where R0 ‖ Rin is shorthand for the parallel combination. From this, one can see
that the circuit-altering effect of attaching the measuring instrument is mitigated
by making the input resistance as high as possible, because

R0Rin

R0 + Rin
→ R0 (1.42)

as Rin → ∞.
As an example of what happens when Rin is not large, consider the circuit in

Fig. 1.22. Ignoring the meter for a moment we see that the original circuit is a
voltage divider, and application of Eq. (1.21) gives Vout = 1 V. But the effect
of the meter’s input resistance is to change R2 to R2 ‖ Rin = 10 k�. Using this
in Eq. (1.21) gives Vout = 2

3 V, and this is what the meter will indicate. So,
unless we are aware of the effect of input resistance, we run the danger of making
a false measurement. On the other hand, if we are aware of this effect, we can
analyze the effect and determine the true value of our voltage when the meter is
unattached.
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Figure 1.23 Impedance specification for a
typical analog meter.

How does one determine the value of the input resistance for a given instrument?
Here are some common ways.

1. Look in the instrument manual under input resistance or input impedance. The
value should be in ohms.

2. For analog voltmeters, look for a specification with units of ohms per volt
(�/V). This is usually printed on the face of the meter itself, as shown in
Fig. 1.23. To get Rin, multiply this number by the full scale voltage selected. For
example, suppose your meter is specified as 20000 �/V and you have selected
the 2.5 V full scale setting. The input resistance is then 20000 × 2.5 = 50 k�.

3. You may have to analyze the instrument circuitry itself. The relevant question
is: when a voltage is applied to the input of the instrument, how much current
flows into the instrument? Then, by Ohm’s Law, the input resistance is just the
ratio of this voltage and current.

1.3 AC signals

So far our examples have used constant voltage sources such as batteries. Constant
voltages and currents are described as DC quantities in electronics. On the other
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V

A

−A

0 t
T 2T

Figure 1.24 A sine wave.

hand, voltages and currents that vary in time are called AC quantities. For future
reference, we list here some of the most common AC signals.

1. Sinusoidal signals. This is probably the most fundamental signal in electronics
since, as we will see later, any signal can be constructed from sinusoidal signals.
A typical sinusoidal voltage is shown in Fig. 1.24.

Sinusoidal voltages can be written

V = A sin(2π ft + φ) = A sin(ωt + φ) (1.43)

where A is the amplitude, f is the frequency in cycles/second or hertz (abbrevi-
ated Hz), φ is the phase, and ω is the angular frequency (in radians/second). The
repetition time trep is also called the period T of the signal, and this is related to
the frequency of the signal by T = 1

f .
There are several ways to specify the amplitude of a sinusoidal signal that are

in common use. These include the following.
(a) The peak amplitude A or Ap.
(b) The peak-to-peak amplitude App = 2A.
(c) The rms amplitude Arms = A/

√
2. This is useful for power calculations

involving sinusoidal waves. For example, suppose we want the power
dissipated in a resistor given the sinusoidally varying voltage across it. We
cannot simply use Eq. (1.8) since our voltage is varying in time (what V
would we use?). Instead, we calculate the time average of the power over
one period:

P = 1
T

∫ T

0

V 2

R
dt = 1

TR

∫ T

0
A2 sin2(ωt + φ)dt = A2

2R
= A2

rms
R

. (1.44)
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This last form shows that we can use Eq. (1.8) to calculate the power as
long as we use the rms amplitude of the sinusoidal signal in the formula.
The same argument applies to Eq. (1.7) for sinusoidal currents.

(d) Decibels (abbreviated dB) are used to compare the amplitude of two signals,
say A1 and A2:

dB = 20 log10
A2

A1
= 10 log10

(
A2

A1

)2
= 10 log10

P2

P1
(1.45)

where this last expression uses the power level of the two signals. So, for
example, if A2 = 2A1, then we get 20 log 2 ≈ 6, so we say A2 is 6 dB
higher than A1. Various related schemes specify the decibel level relative
to a fixed standard. So dBV is the dB relative to a 1 Vrms signal and dBm
is the dB relative to a 0.78 Vrms signal. For the curious, this latter voltage
standard is 1 mW into a 600 � resistor.

Some other typical waveforms of electronics are shown in Figs. 1.25
through 1.30.

2. Square wave. Specified by an amplitude and a frequency (or period).

V

A

−A

0 tT 2T

Figure 1.25 The square wave.

3. Sawtooth wave. Specified by an amplitude and a frequency (or period).

V

A

0 t
T 2T

Figure 1.26 The sawtooth wave.
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4. Triangle wave. Specified by an amplitude and a frequency (or period).
V

A

−A

0 t
T 2T

Figure 1.27 The triangle wave.

5. Ramp. Specified by an amplitude and a ramp time.

V

A

0 ttramp

Figure 1.28 A ramp signal.

6. Pulse train. Specified by an amplitude, a pulse width τ , and a repetition time
trep. The duty cycle of a pulse train is defined as τ/trep.

V

A

0 t
τ trep

Figure 1.29 A pulse train.

7. Noise. These are random signals of thermal origin or simply unwanted signals
coupled into the circuit. Noise is usually described by its frequency content, but
that is a more advanced topic.

V

0 t

Figure 1.30 Noise.
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EXERCISES

1. What is the resistance of a nichrome wire 1 mm in diameter and 1 m in length?
2. What is the maximum allowable current through a 10 k�, 10 W resistor?

Through a 10 k�, 1/4 W resistor?
3. (a) What power rating is needed for a 100 � resistor if 100 V is to be applied

to it? (b) For a 100 k� resistor?
4. Compute the current through R3 of Fig. 1.31.

V1 = 5 V

R3 = 3 �

R2 = 6 � R1 = 5 �

Figure 1.31 Circuit
for Problems 4 and 5.

5. Compute the current through R1 and R2 of Fig. 1.31.
6. The output of the voltage divider of Fig. 1.32 is to be measured with voltmeters

with input resistances of 100 �, 1 k�, 50 k�, and 1 M�. What voltage will
each indicate?

3 V

2 k�

1 k� Vout

Figure 1.32 Circuit for Problem 6.

7. A real battery can be modeled as an ideal voltage source in series with a resistor
(the internal resistance). A voltmeter with input resistance of 1000 � measures
the voltage of a worn-out 1.5 V flashlight battery as 0.9 V. What is the internal
resistance of the battery?

8. If the flashlight battery of the preceding problem had been measured with a
voltmeter with input resistance of 10 M�, what would the reading be?

9. What is the resistance across the terminals of Fig. 1.33?
10. Suppose that a 25 V battery is connected to the terminals of Fig. 1.33. Find the

current in the 10 � resistor.
11. Compute the current through R2 and R3 of Fig. 1.34.
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3 �
10 �

5 �

15 �

2 �
Figure 1.33 Circuit for Problems 9 and 10.

V1 5 V
3 �

R1

R2 5 �

8 �

R3

V2 15 V

Figure 1.34 Circuit for
Problem 11.

12. Find the Thevenin voltage and Thevenin resistance of the circuit shown in
Fig. 1.35.

V1 10 V

3 �

2 �

5 �

Figure 1.35 Circuit for Problem 12.

13. Find the Thevenin voltage and Thevenin resistance of the circuit shown in
Fig. 1.36 with R5 removed. The two terminals for this problem are the points
where R5 was connected.

V1 10 V

1 k�

R2

100 �

R1

99 �

R3
10 �

R5

1 k�

R4

Figure 1.36 Circuit for Problems 13
and 14.
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14. Using the result of the previous problem, find the current through R5 of
Fig. 1.36.

15. In the circuit of Fig. 1.37, compute the current in the 3 � resistor and find the
value of V2.

10 V
4 �

3 �

6 �

V2

0.833 A 1.389 A

Figure 1.37 Circuit for Problem 15.

16. In the circuit of Fig. 1.38, find the value of V3 such that the current in the 10 �

resistor is zero.

30 V

9 � 6 �

V3

10 �

15 V

Figure 1.38 Circuit for Problem 16.

17. Compute all the currents labeled in the circuit of Fig. 1.39 assuming the
following values: V1 = 5 V, V2 = 10 V, V3 = 15 V, R1 = 2 �, R2 = 4 �,
R3 = 6 �, R4 = 7 �, R5 = 5 �, R6 = 3 �. Suggestion: use the mesh loop
method.

R6

R4

R5

V1R1
V2 R2

V3

R3

I6

I4

I5

I1 I2

I3

Figure 1.39 Circuit for Problem 17.

18. (a) Compute the current through the 10 � resistor in the circuit of Fig. 1.40.
Do not use Thevenin’s or Norton’s theorems for this computation. (b) Now
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V1 10 V

12 �

5 �

10 �8 �

Figure 1.40 Circuit for Problem 18.

find the Thevenin voltage, the Thevenin resistance, and the Norton current
when the 10 � resistor is removed. The two terminals for this problem are
the points where the 10 � resistor was connected. (c) Show that, if the 10 �

resistor is connected to the Thevenin equivalent circuit, the current through the
10 � resistor matches the value found in part (a). Do the same for the Norton
equivalent circuit.
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2 AC circuits

2.1 Introduction

Currents and voltages that vary in time are called AC quantities. When analyzing
circuits where the current and voltage change in time, the treatment of resistors
is unchanged: they still obey Ohm’s Law. In this chapter we introduce two other
basic circuit components, the capacitor and the inductor. The treatment of these
components depends on the details of how things are changing in time, and this
will require the development of some new analysis techniques.

2.2 Capacitors

Another basic circuit component is the capacitor. A capacitor is formed by any
pair of conductors, but the usual form is two parallel plates. For this case, the
capacitance C is given by

C = ε
A
d

(2.1)

where A is the area of a plate, d is the distance between plates, and ε is the
dielectric constant of the material between the plates. Note that, like the resistance,
the capacitance depends only on the physical characteristics of the device. The
unit of capacitance is coulombs per volt or farads, abbreviated F. Typical capacitor
values are in a range such that μF or pF are convenient units. When purchasing a
capacitor, you must specify its voltage rating in addition to its capacitance value.
This rating tells you the maximum voltage you can apply across the capacitor
before there is electrical breakdown through the dielectric material.

So what does a capacitor do? One answer is that it is a charge storage device.
When a voltage V is applied to a capacitor, a charge of magnitude Q will be stored
on each plate. Q is given by

Q = CV . (2.2)
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V
C1

C2

C3

V Ceq

Figure 2.1 Equivalent circuit for capacitors in series.

In electronics, we are usually concerned with currents (the flow of charge) rather
than charge. If we take the time derivative of Eq. (2.2) and note that, by definition,
I = dQ

dt we get

I = C
dV
dt

. (2.3)

Viewed from this perspective, C is the constant relating a time-varying voltage
across the capacitor to the AC current through the capacitor.

2.2.1 Equivalent circuit laws for capacitors

As with resistors, capacitors in series and parallel can be combined to form simpler
equivalent circuits.

2.2.1.1 Series capacitors
Consider, for example, three capacitors in series as shown in Fig. 2.1. We wish to
combine the capacitors to form the equivalent circuit on the right.

Let Q1 be the charge on capacitor C1 and so on. Applying KVL and Eq. (2.2)
we obtain

V − Q1

C1
− Q2

C2
− Q3

C3
= 0. (2.4)

By charge conservation, the charge on each capacitor is the same, so Q1 = Q2 =
Q3 ≡ Q and

V = Q
(

1
C1

+ 1
C2

+ 1
C3

)
. (2.5)

Comparing this with Eq. (2.2), we see that the equivalent capacitance Ceq will be
given by

1
Ceq

= 1
C1

+ 1
C2

+ 1
C3

(2.6)
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V C1 C2 C3 V Ceq

Figure 2.2 Equivalent circuit for capacitors in parallel.

or, generalizing this to any number of capacitors in series,

1
Ceq

=
∑

i

1
Ci

. (2.7)

2.2.1.2 Parallel capacitors
Now consider three capacitors in parallel as shown in Fig. 2.2. Again, let Q1 be the
charge on capacitor C1 and so on. Because the capacitors are connected in parallel,
the voltage across them must be the same

V = Q1

C1
= Q2

C2
= Q3

C3
. (2.8)

If we add the three charges and apply Eq. (2.8) to each term, we get

Q1 + Q2 + Q3 = V (C1 + C2 + C3). (2.9)

If we are to form an equivalent capacitor the battery must supply the same amount
of charge in both cases. Thus Qeq = Q1 + Q2 + Q3 and, from Eq. (2.9), Qeq =
V (C1 + C2 + C3). Comparing this with Eq. (2.2), we see that

Ceq = C1 + C2 + C3 (2.10)

or, generalizing this to any number of capacitors in parallel,

Ceq =
∑

i
Ci. (2.11)

Note that capacitors combine opposite to the way resistors combine: series resistors
add up directly while parallel capacitors add up directly.

2.3 Inductors

We learn in introductory physics that currents produce magnetic fields (Ampère’s
Law) and that time-varying magnetic fields can induce a voltage in a circuit
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(Faraday’s Law). Putting these together means that time-varying currents in a
circuit induce voltages. This is expressed in equation form by

V = L
dI
dt

(2.12)

where the constant L is called the self-inductance or simply the inductance. While
any circuit loop has inductance, we usually ignore this (like we ignore the small
resistance of connecting wires) and, if inductance is required in a circuit, add
discrete inductors made of coils of wire. For a long coil (i.e., a solenoid), this
inductance is given by

L = μN2πR2

l
(2.13)

where μ is the permeability of the material on which the coil is wound, N is the
number of turns in the coil, R is the radius of the coil, and l is the length of the coil.
The unit of inductance is volts times seconds per amp or henries (abbreviated H).

The derivation of the equivalent circuit laws for inductors in series and parallel
is similar to that for resistors, and we leave the details to the reader. The result for
inductors in series is

Leq =
∑

i
Li (2.14)

and for inductors in parallel

1
Leq

=
∑

i

1
Li

. (2.15)

Note that inductors combine the same way that resistors do.

2.4 RC circuits

Now we turn to our first circuit that combines components – in this case a resistor
and capacitor in series. Consider the circuit in Fig. 2.3.

V0

R

C

Figure 2.3 A switched RC circuit.
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The resistor-capacitor combination is connected to a switch which can be posi-
tioned to connect to the battery V0 or to a short. We can analyze both cases at once:
applying KVL we obtain

V = IR + Q
C

(2.16)

where V is equal to V0 when the switch connects to the battery and is equal to
zero when the switch is down. We next take the derivative of Eq. (2.16) in order to
remove Q in favor of the current I . Since V is constant for either switch position,
we obtain for both cases

0 = R
dI
dt

+ I
C

. (2.17)

We thus have a first order differential equation for the current I that must be solved
to complete the analysis of the circuit. Rearranging Eq. (2.17), we obtain

dI
I

= − dt
RC

. (2.18)

Integrating both sides gives

ln I = − t
RC

+ K (2.19)

where K is the constant of integration. Finally, we exponentiate both sides

I = exp
(
− t

RC
+ K

)
= I0 exp

(
− t

RC

)
. (2.20)

In this last step we have introduced a new constant I0 in place of the constant
exp(K). Equation (2.20) is the general solution for the current as a function of time.
We will see how to determine the constant I0 in a moment.

The voltage across the resistor is just IR. Let’s also determine the voltage across
the capacitor, Vc. KVL gives (for either switch position) Vc = V − IR. Employing
Eq. (2.20) we obtain

Vc = V − I0R exp
(
− t

RC

)
. (2.21)

For future reference, we note that, since V and I0R are constants, we can write a
general solution for Vc as

Vc = V1 exp
(
− t

RC

)
+ V2 (2.22)

where V1 and V2 are constants.
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2.4.1 Charging

To further determine the behavior of the circuit, we need to specify the conditions
when the switch is thrown (i.e., the initial conditions). Suppose we assemble the
circuit with an uncharged capacitor so that Vc is initially zero. We define t = 0 at
the instant we throw the switch to connect the battery. Thus, at t = 0, Vc = 0 and
V = V0. Using this information in Eq. (2.21), we obtain:

0 = V0 − I0R (2.23)

which then gives us the unknown constant I0 = V0
R . Using this information in Eqs.

(2.20) and (2.21) gives us our specific solutions:

I = V0

R
exp

(
− t

RC

)
(2.24)

and

Vc = V0

[
1 − exp

(
− t

RC

)]
. (2.25)

These solutions are plotted in Fig. 2.4. It is worth noting some of the key
features. The current starts at its maximum value V0/R and then falls toward zero.
The capacitor starts (as we specified) with zero voltage and approaches the battery
voltage V0 as it charges up. Each solution has an exponential term with a decay
that depends on the ratio t/RC. The product RC, which has units of time, is called
the time constant of the decay. It determines how long it takes for the circuit to
approach its final state. When t = RC, the current has dropped to about 37%
of its initial value and the capacitor has reached roughly 63% of its final value.
This notion of time constant makes physical sense, too: a larger capacitor will
take longer to fill with charge; a larger resistor will limit the flow of charge, thus
increasing the time it takes to charge up the capacitor.

2.4.2 Discharging

Suppose that we have waited long enough that the capacitor has become fully
charged. We now throw the switch to the down position. Resetting our clock to
t = 0, our initial conditions are now Vc = V0 and V = 0. Using this information
in Eq. (2.21) gives:

V0 = 0 − I0R → I0 = −V0

R
(2.26)
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Figure 2.4 Capacitor voltage and
current for RC charging.

so our specific solutions become

I = −V0

R
exp

(
− t

RC

)
(2.27)

and

Vc = V0 exp
(
− t

RC

)
. (2.28)

These solutions are plotted in Fig. 2.5. As the capacitor discharges, the capacitor
voltage decays exponentially with a time constant RC and approaches zero (the
voltage level it is now attached to). The current is negative because it flows in
the opposite direction during discharge; it also decays exponentially with the same
time constant.

2.4.3 Response to a square wave

We can use the insight we have obtained from our study of the switched RC circuit
to sketch out the response of an RC circuit to a square wave drive. The square wave
is a little different than our switch problem in that the voltage switches between
V0 and −V0 rather than V0 and zero, so in the square wave case the discharge will
approach −V0.
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Figure 2.5 Capacitor voltage and
current for RC discharging.

Vin

R
C Vout

Figure 2.6 Simple RC circuit with output across the
capacitor.

Let’s first examine the case where the output of the circuit is the voltage across
the capacitor. We can represent this case with the circuit diagram of Fig. 2.6 where
Vin is a square wave of amplitude V0 and period T . The shape of the output voltage
will depend on the relative size of RC and T/2. Some representative cases are
shown in Fig. 2.7.

If RC 	 T/2, the capacitor has plenty of time to charge up fully while the square
wave voltage stays constant. We thus see the same shape waveform as we saw
in the switch problem. When the input voltage switches from V0 to −V0, the
capacitor discharges (or charges to the opposite polarity) and approaches the new
input voltage. Note that for this case, the output voltage looks like a square wave
with rounded leading edges.

If RC ≈ T/2, the capacitor initially charges toward V0, but only gets part of the
way there before the input switches to −V0. It now tries to charge to this input
voltage, but, again, does not have the time to get there. Now the output voltage is
quite different from a square wave. The maximum and minimum voltages are not
shown for this case since they depend on the exact relationship between RC and
T/2, but we can say that the maximum voltage is less than V0 and the minimum
voltage is greater than −V0.
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Figure 2.7 Output of the circuit of Fig. 2.6 for a square-wave input voltage.

If RC 
 T/2, the capacitor has even less time to charge and discharge before
the input voltage switches. In this case, the waveform is a series of rising and
falling lines forming a triangle wave. This reflects the fact that the first term in the
expansion of [1 − exp (−t/RC)] for small t/RC is linear in time.

2.4.4 Voltage across the resistor

Having put so much work into our analysis of the RC circuit, let’s squeeze out
another result. Suppose we apply our square wave to the rearranged circuit of
Fig. 2.8. Now our output voltage is the voltage across the resistor. This may seem
like new territory, but it really is not since Vout = IR and we already solved the
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Figure 2.8 Simple RC circuit with output across
the resistor.
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Figure 2.9 Output of the circuit of Fig. 2.8 for a square-wave input voltage.

problem for I . Again, the shape of the output voltage depends on the relative size
of RC and T/2 as shown in Fig. 2.9.

When RC 	 T/2, we have the case that is most like our switching problem.
The current (and thus the output voltage) starts at its maximum value and decays
exponentially toward zero. Since RC 	 T/2, there is plenty of time to decay all the
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way to zero. When the input voltage switches polarity, the current goes negative
and again decays toward zero. The output voltage resembles a series of positive
and negative spikes.

As the RC time constant becomes larger with respect to T/2, there is not enough
time for the current to decay all the way to zero before the input switches, so the
output voltage waveforms take on the shapes shown in the figure. When RC 
 T/2,
the spiky behavior is gone and the output looks like a distorted square wave.

2.5 Response to a sine wave

We now consider the response of an RC circuit to a sine wave drive. While it
may appear that we are just making a minor change to the input waveform, the
change is actually much more profound. For the switching case (or the square
wave), the input voltage was, at each instant of time, constant. This allowed us
to solve the differential equation (Eq. (2.17)) resulting from the circuit analysis,
producing simple functions of time for I and Vc. This approach is called a time
domain analysis. For more complicated input voltages, time domain analysis is
not always possible because we cannot solve the resulting differential equation. In
these cases, it is sometimes useful to analyze the circuit in terms of its sine wave
response, which we will call a frequency domain analysis.

The relevant RC circuit is shown in Fig. 2.10, where now the voltage source is
a sine wave input Vin. As usual, KVL gives

Vin = Q
C

+ IR (2.29)

and taking the time derivative of this and rearranging yields

R
dI
dt

+ I
C

= dVin

dt
. (2.30)

Note that, unlike the switching problem, the derivative of the input voltage is not
zero. To proceed, we now specify the input voltage as Vin = Vp sin ωt and assume

Vin

C

R

Figure 2.10 Simple RC circuit driven
by a sinusoidal voltage.
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the current has the form I = Ip sin (ωt + φ), where Ip and φ are constants to be
determined. Plugging into Eq. (2.30) results in

RωIp cos (ωt + φ) + Ip

C
sin (ωt + φ) = ωVp cos ωt. (2.31)

Note that our approach has allowed us to turn a differential equation (2.30) into an
algebraic equation (2.31). We now proceed to solve for Ip and φ.

In order to isolate the unknown constants φ and Ip, we employ the following trig
identities:

sin (ωt + φ) = sin ωt cos φ + cos ωt sin φ (2.32)

and

cos (ωt + φ) = cos ωt cos φ − sin ωt sin φ. (2.33)

Dividing Eq. (2.31) by RωIp and applying these identities gives

(cos ωt cos φ − sin ωt sin φ) + 1
ωRC

(sin ωt cos φ + cos ωt sin φ) = Vp

IpR
cos ωt.

(2.34)

Rearranging, we get(
cos φ + 1

ωRC
sin φ − Vp

IpR

)
cos ωt +

(
−sin φ + 1

ωRC
cos φ

)
sin ωt = 0.

(2.35)

In order to proceed in our quest for Ip and φ, we make the following argument:
Eq. (2.35) is valid for all times t, and thus must be valid for any particular time
we choose. If we choose t = 0, then sin ωt = 0 and cos ωt = 1, and Eq. (2.35)
reduces to

cos φ + 1
ωRC

sin φ − Vp

IpR
= 0. (2.36)

Alternatively, if we choose t such that ωt = π
2 , then sin ωt = 1 and cos ωt = 0 and

we obtain

−sin φ + 1
ωRC

cos φ = 0. (2.37)

This last equation can now be solved for φ:

sin φ

cos φ
= tan φ = 1

ωRC
→ φ = tan−1

(
1

ωRC

)
. (2.38)
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ωRC

1

φ

Figure 2.11 Right triangle satisfying Eq. (2.38).

Equation (2.36) requires sin φ and cos φ in order to solve for Ip. If we have values
for ω, R, and C then, of course, we can obtain a number for φ from Eq. (2.38) and
simply plug-in to get sin φ and cos φ. But we prefer to obtain general algebraic
results, so we use the following trick. A right triangle satisfying Eq. (2.38) is shown
in Fig. 2.11. It thus follows that sin φ and cos φ are given by

sin φ = 1√
1 + (ωRC)2

(2.39)

and

cos φ = ωRC√
1 + (ωRC)2

. (2.40)

Using these expressions in Eq. (2.36),

ωRC√
1 + (ωRC)2

+ 1
ωRC

1√
1 + (ωRC)2

= Vp

IpR
(2.41)

which gives, after some algebra,

Ip = ωC√
1 + (ωRC)2

Vp. (2.42)

Recalling the form we assumed for the current at the beginning, our final solution is

I = ωCVp√
1 + (ωRC)2

sin (ωt + φ), (2.43)

where φ is given by

φ = tan−1
(

1
ωRC

)
. (2.44)
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Vin

C
R Vout

Figure 2.12 A high-pass RC filter.

2.5.1 RC positive phase shifter and high-pass filter

We can now apply our result to two common circuits. The first, shown in Fig. 2.12,
takes the output voltage Vout across the resistor.

Since we have already solved for the current, getting this output voltage is
easy:

Vout = IR = ωRCVp√
1 + (ωRC)2

sin (ωt + φ). (2.45)

Recalling that our input voltage has the assumed form Vin = Vp sin ωt, we see
that the output voltage has changed in two ways. (1) It has shifted in phase. Since
ωRC > 0, Eq. (2.44) tells us that 0 < φ < π

2 . Thus our circuit is a positive phase
shifter. (2) The amplitude has changed. It is useful here to ignore the time variation
and phase shift and simply compare the magnitude of the input signal |Vin| with
the magnitude of the output |Vout|:

|Vout|
|Vin| = ωRC√

1 + (ωRC)2
. (2.46)

It is clear from the form of Eq. (2.46) that the relative output amplitude depends
only on the product ωRC. We examine the easily calculable extreme limits to
get some idea of the behavior. When ωRC → 0, |Vout|/|Vin| → 0, and when
ωRC → ∞, |Vout|/|Vin| → 1. Plotting Eq. (2.46) gives us the full picture (see
Fig. 2.13).

The plot shows that lower frequencies (giving lower ωRC) are attenuated, that
is, the output amplitude of such signals is much smaller than the input amplitude.
Higher frequencies, on the other hand, are relatively unattenuated and pass through
the circuit with little change in their amplitude. This behavior is characteristic of
a high-pass filter. The breakpoint frequency or half-power frequency, defined by
ωRC = 1 and shown in the plot, gives the point below which attenuation starts to
be significant.
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ωRC10
Figure 2.13 Response of a high-pass
RC filter.

Vin
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Figure 2.14 A low-pass RC filter.

2.5.2 RC negative phase shifter and low-pass filter

Another common use of our RC circuit can be obtained by taking the output
voltage across the capacitor as shown in Fig. 2.14. In this case Vout = Q/C, but
Q = ∫ I dt, so

Q = Ip

∫
sin (ωt + φ) dt = − Ip

ω
cos (ωt + φ) (2.47)

where we have taken the integration constant to be zero since we assume there is
no DC charge on the capacitor. Using our former result for Ip (Eq. (2.42)):

Vout = −Vp√
1 + (ωRC)2

cos (ωt + φ) = Vp√
1 + (ωRC)2

sin
(
ωt + φ − π

2

)
(2.48)

where in the last step we have used the identity cos A = −sin
(
A − π

2
)

so as to
better compare the result with the form of the input voltage Vin = Vp sin ωt. As
before, 0 < φ < π

2 , so −π
2 < φ − π

2 < 0. This circuit is thus a negative phase
shifter. Looking at the relative magnitudes:

|Vout|
|Vin| = 1√

1 + (ωRC)2
. (2.49)
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Figure 2.15 Response of a low-pass
RC filter.

Here the extreme cases give |Vout|/|Vin| → 1 as ωRC → 0, , and |Vout|/
|Vin| → 0 as ωRC → ∞. The full plot of Eq. (2.49) is given in Fig. 2.15.

In this case the plot shows that lower frequencies are unattenuated while the
higher frequencies are suppressed. This circuit is therefore a low-pass filter. The
breakpoint frequency is defined, as before, by ωRC = 1.

2.5.3 The RC circuit as differentiator and integrator

Now that we have some insight into the behavior of the RC circuit we can perform
one more analysis that gives yet another usage for the circuit. Consider first the
high-pass circuit given above. KVL gives

Vin − Q
C

− Vout = 0 (2.50)

or Q = C(Vin − Vout). Taking the time derivative of this latter equation gives

I = C
d
dt

(Vin − Vout) = Vout

R
(2.51)

where in the last equality we have used the fact that Vout = IR. Now from Eq. (2.46)
we see that, for small ωRC, |Vout| 	 |Vin|, so we can ignore the second term of
the derivative in Eq. (2.51). Using this fact and rearranging we get

Vout ≈ RC
dVin

dt
(2.52)

where the approximation holds when ωRC is small. Thus, under these conditions,
our high-pass filter functions as a differentiator circuit, giving as output a voltage
that is proportional to the derivative of the input voltage.



2.6 Using complex numbers in electronics 43

A similar analysis can be applied to the low-pass circuit. Combining KVL,
I = dQ/dt, and Q = CVout we find

I = Vin − Vout

R
= dQ

dt
= C

dVout

dt
. (2.53)

This time Eq. (2.49) tells us that, for large ωRC, |Vout| 	 |Vin|, so we can ignore
Vout in the first equality of Eq. (2.53). Hence Vin ≈ RC(dVout/dt) or

Vout ≈ 1
RC

∫
Vin dt (2.54)

where the approximation holds when ωRC is large. Under these conditions, our
low-pass filter functions as an integrator circuit, giving as output a voltage that is
proportional to the integral of the input voltage.

Lastly, we note that these conclusions are consistent with the response of the
RC circuit to a square-wave input voltage that we studied earlier. The output taken
across the capacitor (which we now recognize as the integrator configuration)
gave a triangle wave when RC 
 T/2 (cf. Fig. 2.7). The triangle is indeed the
integral of the square wave since the integral of a constant is a linear function
rising or falling according to the sign of the constant. We get the triangle wave
only when RC 
 T/2 because this is when the approximation of Eq. (2.54) holds
(since ω = 2π/T). Similarly, when the output was taken across the resistor (now
recognized as the differentiator circuit) we obtained a series of positive and negative
spikes when RC 	 T/2 (cf. Fig. 2.9). These spikes approximate the delta-function
derivatives of the square wave and the condition on the relative size of RC and T/2
is just the differentiator condition of small ωRC.

2.6 Using complex numbers in electronics

2.6.1 Introduction

We have seen that one way to solve our circuit differential equations is to assume
currents of the form I = Ip sin(ωt + φ). This transforms the differential equation
into an algebraic equation which we can then solve. This, however, involves
considerable work and requires that we know certain trig identities. We can solve
these problems more easily by employing complex numbers. This approach also
has the advantage of producing a broader conceptual understanding of resistors,
capacitors, and inductors.
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2.6.2 The basics of complex numbers

You are probably already familiar with several different types of numbers: integers,
rational numbers, and real numbers. Each of these types has rules that apply to
the manipulation of the member numbers: addition, multiplication, exponentiation,
etc. A complex number is simply another type of number system with its own set
of rules for manipulation.

In general, a complex number ẑ can be written as

ẑ = a + jb, (2.55)

where a and b are real numbers and j ≡ √−1. Note that we signify a complex
number by the “hat” symbol (ˆ), and that we use j for the square root of −1 rather
than the more common i to avoid confusion with the symbol for current. Complex
numbers can be manipulated using the same algebraic rules as for real numbers,
except now we have, in addition, a way of representing the square root of a negative
number, e.g.,

√−3.2 = j
√

3.2.
It is sometimes convenient to represent a complex number as a point on the

complex plane, with the vertical axis being the imaginary part of ẑ (written Im(ẑ)),
and the horizontal axis being the real part of ẑ (written Re(ẑ)). Such a representation
is shown in Fig. 2.16. The point can also be represented using the length |ẑ| of the
line from the origin to the point and the angle θ this line makes with the positive
horizontal axis:

ẑ = |ẑ|(cos θ + j sin θ). (2.56)

|ẑ| and θ are also referred to as the magnitude and phase of ẑ. The two
representations are related by the equations

|ẑ| =
√

a2 + b2 (2.57)

a

b

Im(ẑ)

Re(ẑ)
θ

ẑ

Figure 2.16 A complex number as represented by a point in
the complex plane.
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and

θ = tan−1
(

b
a

)
. (2.58)

Equation (2.56) can be cast in a more useful form by employing the Taylor
expansions for sine, cosine, and the exponential:

cos θ + j sin θ =
(

1 − θ2

2! + θ4

4! − · · ·
)

+ j

(
θ − θ3

3! + θ5

5! − · · ·
)

= 1 + jθ + (jθ)2

2! + (jθ)3

3! + (jθ)4

4! + · · ·
= e jθ . (2.59)

Using this in Eq. (2.56), we see that any complex number can also be written in
the so-called complex exponential form:

ẑ = |ẑ|e jθ , (2.60)

where |ẑ| and θ are related to the the real and imaginary parts of ẑ by Eqs. (2.57)
and (2.58).

Finally, we note a common definition. If we have a complex number of the form
ẑ = a + jb, then the complex conjugate ẑ∗ of this number is defined as ẑ∗ = a − jb.
Multiplying any complex number by its complex conjugate gives a real number
equal to the magnitude of the number squared:

ẑẑ∗ = (a + jb)(a − jb) = a2 − j2b2 = a2 + b2 = |ẑ|2. (2.61)

2.6.3 The series RC circuit

We now use complex numbers to re-solve the problem of a series RC circuit
(Fig. 2.17). We use the same Vin as before (except now we use cosine rather than
sine), but now note that this can be written as the real part of a complex number:

Vin = Vp cos ωt = Re(Vpe jωt). (2.62)

Similarly, we write the current as:

I = Ip cos(ωt + φ) = Re(Ipe j(ωt+φ)) = Re(Îpe jωt) (2.63)

where in the last equation we have written Ipe jφ as the complex current amplitude Îp.
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Vin
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R

Figure 2.17 Series RC circuit.

We now use these complex voltages and currents to solve the circuit equation.
This, of course, is a cheat. The voltage we apply to the circuit is a real number, not
a complex one. We deal with this objection by agreeing to take the real part of our
answer when we finish the solution. As before, applying Kirchoff’s Laws to the
circuit gives

R
dI
dt

+ I
C

= dVin

dt
. (2.64)

We now substitute in the complex voltage Vpe jωt and current Îpe jωt, and obtain

RÎpjωe jωt + 1
C

Îpe jωt = jωVpe jωt. (2.65)

Canceling the e jωt and dividing by jω, we have(
R + 1

jωC

)
Îp = Vp (2.66)

and solving for the current amplitude Îp gives

Îp = Vp(
R + 1

jωC

) = ωCVp

ωRC − j
(2.67)

where in the last step we have multiplied top and bottom by ωC and used the
fact that 1

j = −j. It remains to massage the answer into a nicer form. We use the
fact, noted above, that any complex number can be written in complex exponential
form with the magnitude and angle given by Eqs. (2.57) and (2.58), respectively.
Applying this to the denominator of Eq. (2.67):

ωRC − j =
√

(ωRC)2 + (−1)2 e jθ (2.68)

where θ is given by

tan θ = −1
ωRC

. (2.69)
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The complex current amplitude (2.67) can then be written as

Îp = ωCVp√
(ωRC)2 + 1

e−jθ . (2.70)

Finally, as agreed, we take the real part of our result:

I = Re(Îpe jωt) = ωCVp√
1 + (ωRC)2

Re(e j(ωt−θ)) = ωCVp√
1 + (ωRC)2

cos(ωt − θ)

(2.71)

which is the same as our former result.

2.6.4 Discussion and generalization

What have we gained by using complex numbers? At a minimum, we now have
another method that allows us to solve the differential equations arising from the
analysis of LRC circuits with sinusoidal drive voltages. To my taste, the complex
exponential method is easier because it does not require the trig identities and
algebraic tricks of our former method. The price, of course, is learning to use and
manipulate complex numbers.

There is, however, an additional advantage and a new conceptual insight that
comes from the use of complex numbers. Look at Eq. (2.66). It looks vaguely like
Ohm’s Law for resistors: something times current equals voltage. But this circuit
involves a capacitor as well as a resistor, whereas Ohm’s Law only applies to
resistors. A similar result occurs when we analyze circuits that involve inductors.
It turns out that it is possible to generalize Ohm’s Law to include capacitors and
inductors on equal footing with resistors.

To do this, we introduce the concept of impedance. Impedance is a generalization
of resistance that applies to resistors, capacitors, and inductors alike. Generally, the
impedance of a component or circuit is a complex number, and we use the symbol
Ẑ to denote it. The impedances of our three components are

• Ẑresistor = R
• Ẑcapacitor = 1

jωC
• Ẑinductor = jωL.

An impedance impedes or limits the flow of current and is thus a generalized
resistance. Note that, for capacitors and inductors, the impedance depends on
the frequency ω. When ω → 0, Zcapacitor → ∞, which is consistent with our
knowledge that no DC current flows through a capacitor. On the other hand, when
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ω → ∞, Zinductor → ∞, so an inductor cannot pass high frequency currents.
Finally, some vocabulary. The real part of a complex impedance is called the
resistive impedance or simply the resistance, while the imaginary part is called
the reactive impedance or simply the reactance. The reactance is often given the
symbol χ .

Circuit analysis is also simplified by this unified approach to resistors, capacitors,
and inductors. Since impedances act like generalized resistors, the rules for series
and parallel combinations of impedances are the same as those for resistors:

Ẑseries =
∑

i
Ẑi (2.72)

and

1
Ẑparallel

=
∑

i

1
Ẑi

. (2.73)

The final simplification comes from the fact that we no longer have to deal with
differential equations. Circuit analysis is reduced to applications of a generalized
complex Ohm’s Law:

V̂ = Î Ẑ. (2.74)

2.6.5 Applications

We now apply the complex Ohm’s Law to several circuits. For cases where we
wish to find the current produced by a drive voltage, we can reduce the technique
to a recipe:

• recall the complex Ohm’s Law V̂ = Î Ẑ
• find the total circuit impedance Ẑtot
• calculate Î = V̂

Ẑtot• massage the resulting complex numbers into the form a + jb
• convert this number into complex exponential form |ẑ|e jθ

• plug in the appropriate V̂
• take the real part of the resulting complex current Î .

2.6.5.1 Series RC circuit
First let’s apply the recipe to the previously studied RC circuit. The total impedance
of this series combination of a resistor and capacitor is simply Ẑtot = R + 1

jωC .
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Hence we have

Î = V̂
R + 1

jωC
. (2.75)

This equation is very similar to Eq. (2.67), and the “massaging” is identical to what
we did there. The result is

Î = ωCV̂√
(ωRC)2 + 1

e−jθ , (2.76)

where, as before, θ is given by

θ = tan−1
( −1

ωRC

)
. (2.77)

In most cases, we have a drive voltage of the form Vp cos(ωt) or Vp sin(ωt). In
either case, we can plug into Eq. (2.76) a complex voltage Vpe jωt with the proviso
that, at the end, we will take the real part of the answer for the cosine drive or the
imaginary part of the answer for the sine drive. Thus

Î = ωCVp√
(ωRC)2 + 1

e j(ωt−θ) (2.78)

and, for a cosine drive, we obtain our former result:

I = Re(Î) = ωCVp√
(ωRC)2 + 1

cos(ωt − θ). (2.79)

2.6.5.2 Series LR circuit
Now let’s apply the technique to a circuit we have not studied before, the series
LR circuit shown in Fig. 2.18. The total impedance of this series combination of a
resistor and inductor is Ẑtot = R + jωL. Hence,

Î = V̂
R + jωL

= V̂√
R2 + (ωL)2 e jθ

(2.80)

Vin

I
L

R

Figure 2.18 Series LR circuit.
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where

θ = tan−1
(

ωL
R

)
. (2.81)

As before, we use V̂ = Vpe jωt and obtain

Î = Vp√
R2 + (ωL)2

e j(ωt−θ). (2.82)

If the quantity sought is the current, we simply take the real part of Eq. (2.82) and
we are done. Often, however, the circuit’s function is to produce an output voltage
which is obtained by taking the voltage across one of the components. This can
be obtained by multiplying the current times the impedance of the component. For
example, suppose we want the voltage across the resisitor as the output. Then,

V̂out = Î Ẑresistor = VpR√
R2 + (ωL)2

e j(ωt−θ) (2.83)

and, taking the real part,

Vout = VpR√
R2 + (ωL)2)

cos(ωt − θ). (2.84)

Since θ as given by Eq. (2.81) will be positive, this circuit acts as a negative phase
shifter. It also acts as a frequency filter, as can be seen by looking at the relative
magnitudes of the input and output voltages

|Vout|
|Vin| =

VpR√
R2+(ωL)2

Vp
= 1√

1 + (ωL
R
)2 . (2.85)

We can see from this last form that the relative output amplitude has a maximum
at ω = 0 and falls off to zero as ω → ∞. The entire curve is shown in Fig. 2.19.
Note that low frequency signals pass through unattenuated while higher frequency
signals (those higher than R/L) are reduced in amplitude. Thus, when the output is
taken across the resistor, the circuit thus acts as a low-pass filter.

Suppose now that we use the same LR circuit but take the output voltage across
the inductor. This voltage, according to the complex Ohm’s Law, is just Î Ẑinductor.
Thus, from Eq. (2.80) we have

V̂out = jωLV̂
R + jωL

= ωLV̂
−jR + ωL

=
ωL
R V̂

−j + ωL
R

=
ωL
R V̂√

1 + (ωL
R
)2 e jθ

(2.86)
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|Vout||Vin|

1

1√
2

ωR
L

0 Figure 2.19 LR low-pass
filter.

where now

θ = tan−1

(
−1
ωL
R

)
= tan−1

(−R
ωL

)
. (2.87)

Proceeding as before, we get

Vout =
ωL
R Vp√

1 + (ωL
R
)2 cos(ωt − θ) (2.88)

and

|Vout|
|Vin| =

ωL
R√

1 + (ωL
R
)2 . (2.89)

Since θ is now negative (see Eq. (2.87)), the circuit acts as a positive phase shifter.
As before, it also acts as a frequency filter, but now it is a high-pass filter, as can
be seen by looking at the graph of Eq. (2.89) shown in Fig. 2.20.
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|Vout||Vin|

1

1√
2

ωR
L

0 Figure 2.20 LR high-pass
filter.

Vin

I
L

R

C
Figure 2.21 Series LRC circuit.

2.6.5.3 Series LRC circuit
As a final example, consider the series LRC circuit shown in Fig. 2.21. For this
circuit, the total impedance is Ẑtot = R + jωL + 1

jωC . Hence,

Î = V̂
R + jωL + 1

jωC
= V̂

R + j
(
ωL − 1

ωC

) = V̂√
R2 +

(
ωL − 1

ωC

)2
e jθ

(2.90)

where

θ = tan−1

(
ωL − 1

ωC
R

)
. (2.91)
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Again using V̂ = Vpe jωt, we obtain

Î = Vp√
R2 +

(
ωL − 1

ωC

)2
e j(ωt−θ) (2.92)

and taking the real part of Î yields

I = Vp√
R2 +

(
ωL − 1

ωC

)2
cos(ωt − θ). (2.93)

The frequency dependence of I is of particular interest. Note that as ω → 0,
1

ωC → ∞, and |I| → 0. Also, as ω → ∞, ωL → ∞, and |I| → 0. So for very low
and very high frequencies we get no current. Somewhere in between there must be
a maximum. We can find it by setting the derivative of the amplitude with respect
to ω equal to zero:

0 = d
dω

1√
R2 +

(
ωL − 1

ωC

)2

= −1
2

[
R2 +

(
ωL − 1

ωC

)2
]−3/2

2
(

ωL − 1
ωC

)(
L + 1

ω2C

)
(2.94)

which has solution ωL = 1
ωC or

ω = 1√
LC

≡ ω0. (2.95)

The entire curve is shown in Fig. 2.22. Systems exhibiting a large response at a
particular drive frequency are called resonant systems, and the frequency at which
the response peaks is called the resonant frequency. Thus, for the series LRC
circuit, the resonant frequency is ω0. The current amplitude at that point is Vp/R,
the value it would have if the inductor and capacitor were removed from the circuit.
Apparently, at the resonant frequency, the effect of the inductive and capacitive
impedance cancels. The width of the curve �ω at a current 1√

2
down from the

peak can be shown to be approximately R/L, where the approximation is good
for R/L 	 ω0. Thus, the smaller R is, the narrower the curve and the higher the
peak current. If we take the voltage across the resistor as our output, Vout = IR
and the circuit functions as a band-pass filter, only allowing frequencies near ω0 to
pass through. Such circuits are routinely used to tune-in a selected communication
channel while suppressing the neighboring transmission frequencies.
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|I|
Vp
R

Vp√
2R

ω
ω00

�ω ≈ R
L

Figure 2.22 LRC
resonance curve.

V0

R

C

L
Figure 2.23 A switched LRC circuit.

2.7 Using the complex exponential method
for a switching problem

While our method of complex exponentials was developed for circuits with a
sinusoidal drive voltage, it can also be applied to switching problems. As an
example, consider the circuit in Fig. 2.23.

Applying KVL, we obtain

IR + Q
C

+ L
dI
dt

= V (2.96)

where V = V0 when the switch is up and V = 0 when the switch is down. Let’s
suppose that we are interested in the voltage across the capacitor, Vc = Q/C. It will
be useful, therefore, to solve for the charge Q directly. Using I = dQ/dt, Eq. (2.96)
becomes
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L
d2Q
dt2

+ R
dQ
dt

+ Q
C

= V . (2.97)

Equation (2.97) is mathematically classified as a second order, linear, inhomoge-
neous differential equation. The general solution to such an equation is the sum
of (1) the general solution to the homogeneous equation (i.e., Eq. (2.97) with the
right hand side set to zero) and (2) any particular solution to Eq. (2.97). For the
particular solution, we simply take the constant solution Q = CV . That leaves
the homogeneous equation to solve. Using our complex exponential technique, we
plug in Q̂ = Qp exp (jωt). This gives(

−ω2L + jωR + 1
C

)
Qp exp (jωt) = 0. (2.98)

Canceling Q̂ and rearranging, we obtain a quadratic equation for ω:

ω2 − jγω − ω2
0 = 0 (2.99)

where we have defined γ ≡ R/L and ω2
0 ≡ 1/LC. Solving for ω:

ω =
jγ ±

√
−γ 2 + 4ω2

0

2
= j

γ

2
±
√

ω2
0 − γ 2

4
. (2.100)

We thus obtain two values for ω. For the general solution we must use both.

2.7.1 Underdamped case

To go further with the solution we must specify the relative magnitudes of ω0 and
γ . We first consider the case where ω2

0 >
γ 2

4 , the so-called underdamped case.
Since the square root in Eq. (2.100) is then a real number, our two values for ω are
ω = jγ

2 ± ω1, where we have defined

ω1 ≡
√

ω2
0 − γ 2

4
. (2.101)

Using both values to form our solution gives

Q̂ = Q1e− γ
2 te jω1t + Q2e− γ

2 te−jω1t (2.102)

where Q1 and Q2 are constants. Taking the real part:

Q = (Q1 + Q2)e− γ
2 t cos ω1t. (2.103)
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To this we must add our particular solution Q = CV to obtain the general solution
to Eq. (2.97). Since we are interested in the voltage across the capacitor Vc, we
divide the result by C and obtain

Vc = V3e− γ
2 t cos ω1t + V (2.104)

where we have combined constants to form the new constant V3 ≡ (Q1 + Q2)/C.
To complete the solution we must specify V3 by applying the initial conditions.

Assuming the capacitor is initially uncharged (Vc = 0 at t = 0) when the switch is
placed in the up position (V = V0), Eq. (2.104) yields V3 = −V0 and the solution
becomes

Vc = V0

(
1 − e− γ

2 t cos ω1t
)

. (2.105)

The solution has an oscillating part (cos ω1t), but the amplitude of this oscillation
decays in time according to exp

(−γ
2 t
)
. This behavior is known as ringing since

it is reminiscent of a ringing bell sound. As t → ∞, the solution approaches the
constant V0 and the capacitor becomes fully charged. This behavior is shown in
Fig. 2.24.

Imagine now that, after the capacitor has become fully charged, we throw the
switch to the down position so that Vc = V0 at t = 0 and V = 0. Applying these
conditions to Eq. (2.104) shows that V3 = V0, so the solution becomes

Vc = V0e− γ
2 t cos ω1t. (2.106)

Again, we have an oscillation at frequency ω1 that dies off on a time scale set by
γ . After a long enough time, the capacitor becomes fully discharged and Vc = 0.
Combining this with the former result then gives the full behavior of the switched
underdamped circuit as shown in Fig. 2.25.

This underdamped behavior is seen in other physical systems as well. For exam-
ple, a lightly damped harmonic oscillator that has its equilibrium position suddenly
changed will oscillate around that new equilibrium position until the oscillations
are damped out.

Vc

V0

0 t
Figure 2.24 Ringing of an
LRC circuit.



2.7 Using the complex exponential method 57

Vc

V0

0 t
Figure 2.25 Underdamped response of a
switched LRC circuit.

Vc

V0

0 t Figure 2.26 Overdamped response of a
switched LRC circuit.

2.7.2 Overdamped case

Next, let us consider the case where ω2
0 <

γ 2

4 , the so-called overdamped case.
Since the square root in Eq. (2.100) is now an imaginary number, our two solutions
become ω = j

(γ
2 ± β

)
, where we have defined β ≡

√
γ 2/4 − ω2

0. Again using
both solutions to form our solution gives

Q̂ = Q1e− γ
2 te−βt + Q2e− γ

2 teβt (2.107)

where Q1 and Q2 are constants. Note that there is no danger of the second term
diverging since β <

γ
2 by construction. Proceeding as before we obtain

Vc = V0

2

(
2 − e−( γ

2 +β)t − e−( γ
2 −β)t

)
(2.108)

for the charging portion of the solution and

Vc = V0

2

(
e−( γ

2 +β)t + e−( γ
2 −β)t

)
(2.109)

for the discharging portion.
A plot of these functions is shown in Fig. 2.26. There are no oscillations in

this case. Rather, there is a slow, monotonic approach to the final value. This is
characteristic of a system where the damping (in this case produced by the circuit
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Vc

V0

0 t
Figure 2.27 Critically damped response of a
switched LRC circuit.

resistance) is large. The mechanical system analog would be a harmonic oscillator
in a viscous fluid like molasses.

2.7.3 Critically damped case

Finally, let’s look at what happens if ω2
0 = γ 2

4 , the critically damped case. Now
the square root in Eq. (2.100) is zero, and our two values for ω become identical.
In such cases the methods of ordinary differential equations can be applied to yield
a second independent solution. The resulting solution will have the form

Vc = (A + Bt)e− γ
2 t + V (2.110)

with A and B constants. This critically damped case, shown in Fig. 2.27, produces
the most rapid change to the new equilibrium value of Vc.

2.8 Fourier analysis

We have seen that the complex exponential method gives us a powerful method
for solving problems involving combinations of resistors, capacitors, and inductors
when the drive voltage is sinusoidal. But what about other types of drive voltage
(e.g., triangle, sawtooth, etc.)? As we will now show, our analysis is applicable to
any periodic signal as a consequence of a remarkable theorem named for Joseph
Fourier.

The theorem is easily stated. Let f (t) be any real, periodic function with period
T such that f (t) = f (t + T) for any t. Then there exist complex constants ĉn such
that

f (t) =
∞∑

n=−∞
ĉne jωnt (2.111)
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where

ωn = 2πn
T

≡ nω1 (2.112)

and the constants are given by

ĉn = 1
T

∫ t′+T

t′
f (t)e−jωntdt (2.113)

for all n and any t′. Note that, as a consequence of Eq. (2.113), it is also true that
c−n = c∗

n.
Some powerful insights result from consideration of this theorem. Up to now,

we have solved our circuit problems by assuming a voltage drive of the form
Vp exp (jωt), so we know how to handle this case. But Eq. (2.111) says that any
periodic function can be written as the sum of terms of this form, so we, in principle,
can deal with the periodic function by dealing with each term on the right hand
side of Eq. (2.111). To see how this works, let’s return to the example of the series
LRC circuit. Suppose now that we have a drive of the form V̂n = ĉn exp (jωnt).
Then, as before, the complex Ohm’s Law gives

ĉne jωt = ÎnẐtot = Î
(

R + jωnL + 1
jωnC

)
. (2.114)

We solve this for În as before and obtain

În = ĉn√
R2 +

(
ωnL − 1

ωnC

)2
e j(ωnt−φn) (2.115)

where

φn = tan−1

(
ωnL − 1

ωnC
R

)
. (2.116)

Since every term in Eq. (2.111) has the assumed form, our formal solution for a
drive of the form f (t) is then

I =
∞∑

n=−∞
În. (2.117)

Fourier’s theorem means that we can think of any periodic function as being
composed of oscillating terms at different frequencies, and that these frequencies
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f (t)

Vp

−Vp

t
T−T

Figure 2.28 A symmetric sawtooth.

are harmonically related (i.e., the higher frequencies are integer multiples of the
first frequency ω1, as noted in Eq. (2.112)). This is useful because, as we have seen
with the various filters, circuit response is often a function of frequency. Thus, for
example, a periodic function f (t) applied to a low-pass filter may have its lower
frequency components unaffected while its higher frequencies are attenuated. The
output would be roughly the sum of the lower frequency portions of the original
signal.

The only difficult part of using Fourier’s theorem is computing the constants ĉn
using Eq. (2.113) and simplifying the resulting series. This is not usually required
in electronics since the typical periodic functions used have their Fourier series
already tabulated, but for the curious we do one example. Suppose our periodic
function is the sawtooth wave shown in Fig. 2.28.

Since the integral in Eq. (2.113) can be evaluated for any beginning time t′, we
choose t′ = −T

2 for convenience. Then over the limits of the integral (−T
2 to T

2 ),
the function can be expressed as f (t) = (2Vp/T)t. Using this in Eq. (2.113) gives

ĉn = 1
T

∫ T
2

− T
2

dt
2Vp

T
te−jωnt

= 2Vp

T2

⎡
⎣ te−jωnt

−jωn

∣∣∣∣∣
T
2

− T
2

− 1
−jωn

∫ T
2

− T
2

dte−jωnt

⎤
⎦ (for n �= 0) (2.118)

= 0 (for n = 0)

where for the n �= 0 case we have integrated by parts. The first term in Eq. (2.118)
simplifies:

te−jωnt
∣∣∣∣ T

2
− T

2
= T

2
e−jnπ −

(
−T

2

)
e jnπ = T cos nπ = T(−1)n. (2.119)
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So does the second term:∫ T
2

− T
2

dte−jωnt = 1
−jωn

e−jωnt
∣∣∣∣ T

2
− T

2
= − 1

jωn
(e−jnπ − e jnπ) = 2

ωn
sin nπ = 0.

(2.120)

We are thus left with

ĉn = − 2Vp

jωnT
(−1)n (2.121)

for all n except zero. Our sawtooth function can then be written as

f (t) =
∞∑

n=−∞
− 2Vp

jωnT
(−1)ne jωnt

=
∞∑

n=1

2Vp

T
(−1)n j

ωn

(
e jωnt − e−jωnt

)

=
∞∑

n=1

2Vp

π
(−1)n+1 1

n
sin ωnt. (2.122)

Writing out the series and noting ωn = nω1 yields

f (t) = 2Vp

π

[
sin ω1t − 1

2
sin 2ω1t + 1

3
sin 3ω1t − 1

4
sin 4ω1t + · · ·

]
. (2.123)

Our Fourier analysis has thus shown us that the sawtooth wave can be viewed as
consisting of a series of sine waves with frequencies that are integer multiples of
ω1 = 2π

T . Similar series can be written for other common waveforms. For a triangle
wave with peak amplitude Vp and period T we obtain

f (t) = 8Vp

π2

[
sin ω1t + 1

9
sin 3ω1t + 1

25
sin 5ω1t + 1

49
sin 7ω1t + · · ·

]
(2.124)

while for a square wave with the same specifications we have

f (t) = 4Vp

π

[
sin ω1t + 1

3
sin 3ω1t + 1

5
sin 5ω1t + 1

7
sin 7ω1t + · · ·

]
. (2.125)

2.9 Transformers

A transformer is, as the name implies, a device that transforms an AC voltage of
one amplitude into an AC voltage of another amplitude. This ability is routinely
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n1

V1

I1

n2

V2

I2

Figure 2.29 Schematic of a
transformer.

used throughout the electrical systems of modern society. At power generating
plants, huge transformers step up the voltage so that a large amount of power
can be transmitted without necessitating very large transmission wires. Since the
high voltages are dangerous, at the consumer end of the power grid transformers
step down the voltage to a safe level. The required voltage supplies inside most
consumer electronics are even lower, so another step-down transformer is found
inside these devices.

A typical transformer is shown schematically in Fig. 2.29. A length of wire is
wrapped around one portion of the transformer core n1 times. These windings are
called the primary windings. Another wire is wrapped around the core n2 times to
form the secondary windings. An AC voltage V1 is applied to the primary coil and
an AC current I1 flows. This produces a time-varying magnetic field. The core is
made of a ferrous material so that the magnetic field tends to stay inside the material
and is guided around to where the secondary coil is positioned. Faraday’s Law tells
us that a time-varying magnetic field inside a coil of wire induces a voltage in that
coil, and we will call that secondary voltage V2. The relationship between V1 and
V2 is expressed by

V2 =
(

n2

n1

)
V1. (2.126)

The output voltage of the transformer V2 thus depends only on the input voltage
V1 and the ratio of the number of secondary to primary turns, n2/n1.

If a resistor or other load is attached to the secondary coil, a current I2 can flow.
Since energy must be conserved (we assume no losses due to flux leakage or other
non-ideal behaviors), I1V1 = I2V2. Using Eq. (2.129) for V2, we obtain

I2 =
(

n1

n2

)
I1. (2.127)

The output current of the transformer I2 depends only on the input current I1 and
the so-called turns ratio, n1/n2. Note that if we produce a transformer with a turns
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V0

R0

RL

Figure 2.30 The power transfer problem.

ratio that will increase the voltage, the output current will necessarily be less than
the input current, and vice versa. There is no free lunch in physics.

Equations (2.126) and (2.127) are the fundamental laws of ideal transformer oper-
ation, and these are the basis of the step-up and step-down transformers mentioned
earlier. Another use for the transformer is in impedance matching. To establish the
motivation for this usage, let’s consider the following problem. Suppose we have
a voltage source with a voltage V0 and an internal resistance R0. This is connected
to a load resistor RL as shown in Fig. 2.30. The question is, how should R0 and RL
be related if we want the maximum power transferred to the load resistor?

The power to the load is

PL = I2RL =
(

V0

R0 + RL

)2
RL. (2.128)

Note that the power to the load goes to zero when RL → 0 or RL → ∞. Somewhere
between these limits we will get a maximum in the power. To find this case we set
the derivative of PL with respect to RL to zero:

dPL

dRL
= V 2

0

[
1

(R0 + RL)2 − 2RL

(R0 + RL)3

]
= 0. (2.129)

Solving this for RL gives RL = R0 for maximum power transfer.
This general result shows that the load resistance (or, more generally, the load

impedance) must match the internal resistance of the source if we want to transfer
the most power to the load. While this is desirable, we are sometimes faced with
situations where this is not the case. For example, most stereo speakers have an
impedance of 8 � and this load impedance may not match the output impedance of
the stereo amplifier. To achieve the desired impedance matching, we can employ a
transformer. Consider the circuit shown in Fig. 2.31.

The output current and voltage are given by V2 = I2RL. Using Eqs. (2.126) and
(2.127) for V2 and I2 we get

V1

(
n2

n1

)
= I1

(
n1

n2

)
RL (2.130)
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Source

I1

V1

I2

V2 RL
Figure 2.31 A transformer used to match
impedance.

or

V1 = I1

[(
n1

n2

)2
RL

]
. (2.131)

Thus the input voltage and current are now related by an effective resistance

Reff =
(

n1

n2

)2
RL. (2.132)

The point here is that the transformer has changed the resistance the source “sees”
from RL to Reff . By choosing a transformer with appropriate turns ratio, we can
match Reff to whatever source resistance we have, thereby insuring maximum
power transfer. In effect, the transformer has matched the source impedance to the
load impedance.

Further details on analyzing circuits involving transformers are given in
Appendix C.
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EXERCISES

1. Find the equivalent capacitance across the terminals of the circuit in Fig. 2.32.

2.7 μF

C1

2.7 μF

C2

100 μF C3 C410 μF
Figure 2.32 Circuit for
Problem 1.

2. Sketch Vout versus time for the circuit shown in Fig. 2.33 after the switch
is closed. Assume the capacitor is initially uncharged and that V0 = 12 V,
R = 100 k�, and C = 10 μF. Include appropriate numeric scales on the axes.

V0

R
C Vout

Figure 2.33 Circuit for Problems 2, 3,
and 4.

3. Referring to Fig. 2.33 and taking V0 = 100 V, R = 1 M�, what value of C is
needed so that Vout = 70 V at 10.0 s after the switch closes?

4. Suppose we use the circuit of the previous problem and wait a long time after
the switch is closed so that the capacitor is fully charged. Now we open the
switch and attach a 10 k� resistor across the output terminals. How long will
it take for the voltage across the capacitor to drop to 1.0 V?

5. A sine wave with amplitude 20 Vpp is connected to a 10 k� resistor. Calculate
the peak, the rms, and the average currents though the resistor. What power
rating should the resistor have?

6. Calculate the magnitude and the phase of the total impedance for the circuit
shown in Fig. 2.34.

1 Vp 150 Hz

10 k�

0.2 μF
Figure 2.34 Circuit for Problems 6
and 7.
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7. Suppose we change the frequency of the signal generator in Fig. 2.34. If the
angular frequency is set to 103 rad/s, what is the peak amplitude of the voltage
across the capacitor? Of the voltage across the resistor?

8. Determine the resonant frequency ω0 for the circuit of Fig. 2.35.

2 μF 1 k� 1 H Figure 2.35 Circuit for Problems 8 and 9.

9. Find the magnitude and phase of the impedance of the circuit of Fig. 2.35 for
a frequency of 2500 Hz.

10. Design an RC low-pass filter that has |Vout|/|Vin| = 0.5 at 5 kHz.
11. Derive the following expression for the circuit of Fig. 2.36:

|Vout|
|Vs| = R2√

(R1 + R2)2 + (ωR1R2C)2
. (2.133)

Vs

R1

R2 C Vout

Figure 2.36 Circuit for Problem 11.

12. Consider the circuit of Fig. 2.37, where R1 = 20 �, χ1 = 37.7 �, R2 = 10 �,
and χ2 = −53.1 �. Compute the magnitude of the current flowing out of
the signal generator and the phase angle between that current and the signal
generator voltage. Assume the signal generator outputs a 230 Vrms sine wave
with a frequency of 60 Hz.

R1

χ1

R2

χ2

Figure 2.37 Circuit for Problem 12.

13. Refering to Fig. 2.38 and taking Vin = 120 Vrms, Vout = 12 Vrms, and R = 20 �,
find the turns ratio of the transformer, the current flowing in the primary, and
the current flowing in the secondary.

14. An audio signal generator has an output impedance of 600 �. To drive an 8 �

speaker with maximum power transfer, an impedance-matching transformer is
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Vin Vout R

Figure 2.38 Circuit for Problem 13.

used between the generator and the speaker. What is the necessary turns ratio
for such a transformer?

15. A step-down transformer with no markings is measured to have a 1.6 �

impedance on one side and a 40 � impedance on the other. Which side is
the primary and which side is the secondary? If the input voltage is 120 Vrms,
what will the output voltage be?

16. A low-pass filter with a break-point frequency of 100 Hz is used to filter a
90 Hz square wave signal with amplitude V0. Describe the output of the filter
including its rough shape, its frequency, and its amplitude.

17. Write down the Fourier series for the signal shown in Fig. 2.39. Hint: it is not
necessary to do any calculation. Think about how this signal is related to one
for which we already know the Fourier series.

V
V0

tT0 Figure 2.39 Waveform for
Problem 17.

18. Given a sawtooth signal with a period of 1 ms, design a circuit (including
all component values) that will take this sawtooth as input and give a 3 kHz
sine wave as output. If the peak voltage of the sawtooth is 1 V, what will the
amplitude of the resulting sine wave be?
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3 Band theory and diode circuits

3.1 The band theory of solids

3.1.1 Introduction

A fundamental result from basic modern physics is that atoms are characterized by
discrete energy levels. Each of these energy levels can accept up to two electrons.
When “building” an atom, we start from the lowest level, fill in two electrons, and
then move up to the next energy level and fill it with electrons. This continues
until we have placed all the atom’s electrons in energy levels. We also know that
if an atom absorbs energy from the outside (for example, by absorbing a photon),
an electron can be promoted to a higher energy level. Conversely, an electron that
falls from a higher to a lower energy level emits a photon.

What happens to this energy level model when we assemble many atoms together
into a solid? As the atoms get closer together, we must start to talk about the energy
levels of the solid as a whole rather than those of the individual atoms. Rather
than doing quantum mechanics for an isolated potential (the atom), we do it for
a periodic array of atoms that exhibits a periodic potential. The net result of this
is that, during the assembly of N atoms, the individual atomic levels split into N
levels. This is shown schematically in Fig. 3.1. Thus when the solid is assembled
and the atoms are at their final equilibrium spacing, the solid is characterized by
a series of energy bands consisting of a large number of closely spaced allowed
energy levels. Just as electrons in individual atoms cannot have energies between
the atomic energy levels, so electrons in a solid are forbidden to have energies
between the allowed bands.

3.1.2 Band theory

Imagine we are constructing a material consisting of N atoms as described above,
but we have not added any electrons yet. We now start to add electrons to the solid,
starting with the lowest energy level. As with atomic energy levels, only certain
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E

a

Figure 3.1 Schematic representation of energy level splitting
as a solid is assembled. Here a is the distance between atoms.
The light gray shading represents the large number of closely
spaced energy levels produced by the splitting of the original
atomic energy level. The dotted line represents the equilibrium
spacing. At this spacing the solid is characterized by energy
bands.
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Allowed and filled

Forbidden
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Figure 3.2 Energy band structure for a
conductor.

energies are allowed and we can only place two electrons in each level due to the
Pauli Exclusion Principle. We continue to fill energy levels from the bottom up until
we have used all the electrons normally associated with our N atoms. The character
of the resulting band structure determines whether a material is a conductor, an
insulator, or a semiconductor.

Consider, for example, the case shown in Fig. 3.2, where we plot energy level
versus position x within the material. We show only the upper energy levels since
these are the ones of interest; the lower energy levels are all filled with electrons
and do not change under normal material operations. Moving from the bottom of
the figure up, we show a band of allowed energy levels that are filled with electrons,
followed by a band of non-allowed (or forbidden) energies, followed by an allowed
band that is only partially filled with electrons.

It is the fact that this last band is only partially filled that makes this material a
conductor. In order to produce a current, electrons in a material must move and
thus must increase their energy slightly. They must, therefore, be able to move to
a slightly higher energy level. This is possible for this material because there are
lots of empty energy levels in the top-most band. This material will thus be a good
conductor.

This situation should be contrasted with the band structure shown in Fig. 3.3.
Here we have a full, allowed band, followed by a wide forbidden band, followed
by an empty allowed band. The electrons in this material cannot flow to produce
a current because there are no nearby unfilled energy levels for them to move to.
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Allowed and filled

Forbidden and wide

Allowed and empty

Figure 3.3 Energy band structure for an
insulator.

There are unfilled levels further up, but the forbidden band is too wide for the
electrons to cross. This is the characteristic band structure of an insulator.

At this point we should quantify some of these statements. The energy gained by
an electron contributing to a current in a material is quite small. The voltage applied
to produce the current accelerates the electrons, but before they gain much velocity
they undergo a collision that changes their direction and slows them down. As a
result, the average drift energy of a conduction electron is on the order of 10−21 eV.
This is comparable to the spacing between energy levels within a band, but is much
smaller than the energy separation between bands (∼0.1 eV). Thus there is no way
the electrons in an insulator can gain enough energy from conduction to cross the
forbidden band.

There is, however, another source of energy that plays an important role in
semiconductor physics: thermal energy. A basic insight from thermal physics tells
us that temperature is a macroscopic measure of the microscopic motion of particles.
Thus particles in our material can have energies beyond those set by their position
on the band structure. The additional energy from thermal motion has a distribution
of values (more on this later), but is of order kT , where k is Boltzmann’s constant.
At room temperature, kT ≈ 0.025 eV, which is comparable to the energy gap
between bands. It is thus possible (if the temperature is high enough and the band
gap is small enough) for an electron to jump to the next allowed band. Once it is
there, it can produce a current because now there are lots of the open energy levels
required for conduction. If our material is indeed an insulator, the forbidden band
must be wide enough to prevent this from happening, i.e., it must be too wide for
so-called thermal transitions.

Our third type of material, the semiconductor, is characterized by the opposite
situation: the forbidden band is narrow enough to allow thermal transitions to the
next allowed band. This is shown in Fig. 3.4. As with the insulator, we have a
filled allowed band, followed by a forbidden band and an empty allowed band.
If the temperature of the material is non-zero, the electrons can move into the
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Figure 3.4 Energy band structure for a
semiconductor.
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Figure 3.5 Schematic depiction of hole formation and
transport when an electron is promoted.

empty allowed band using thermal energy. We thus see on a basic level why
semiconductor electronics is sensitive to temperature: the temperature determines
how much thermal energy is available to promote electrons from the last filled
band (called the valance band) up to the next allowed band (called the conduction
band).

When an electron in a semiconductor moves from the valance band to the
conduction band, it leaves behind a vacancy in the valance band. This vacancy is
called a hole (see Fig. 3.5). The hole behaves as if it were a positive particle. To
see this, imagine that a voltage is applied across our material, with the negative
terminal of the voltage on the left and the positive terminal of the voltage on the
right. If an electron is promoted to the conduction band, it will also move toward
the right, toward the positive voltage. The hole it left behind in the valance band
will soon be filled with an electron in a lower energy level. While moving up
in energy, this electron will also move to the right, trying to get to the positive
terminal. Thus the vacancy it leaves will move to the left. As this process of
filling the vacancy continues, the hole will move down and to the left, toward the
negative terminal. It is thus possible to view the process in terms of the motion
of the hole rather than the motion of the electrons. In this view, the hole (a
positive conduction particle) moves toward the negative terminal as it increases
in energy (here we must switch signs on our energy scale and let the hole energy
increase downwards). If all this seems confusing, don’t worry: the hole picture
is not required. We can still get the physics right by just following the motion
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of the electrons, and this is the approach we will take in this text. We include
the hole picture for completeness, since it is often encountered in the electronics
literature.

3.1.3 Doping semiconductors

The number of electrons promoted thermally to the conduction band (the conduction
electrons) is small for a pure semiconductor, so a pure semiconductor will only
allow a small current to flow when a voltage is applied. This behavior can be
altered, however, by adding impurities to the pure semiconductor. This is called
doping the semiconductor.

For our purposes, there are two ways of doping a semiconductor. The first is
by adding a donor impurity. Suppose, for example, that we have a pure germa-
nium semiconductor. Germanium atoms have four electrons in the outermost shell
of the atom (the outermost shell, for those with chemistry background, is in the
4s24p2 configuration). If this is doped with antimony (which has five electrons in
the outermost shell 5s25p3), the semiconductor then has a number of extra loosely
bound electrons. The effect of this is to add filled, localized energy levels to the
band structure ( filled with the extra electrons and local because the impurities
are in particular positions within the semiconductor). The location of these addi-
tional levels depends on the type of material, type of impurity, and other factors.
A desirable location is shown in Fig. 3.6. The new levels are near the bottom of the
conduction band. It is thus relatively easy for these electrons to be promoted into
the conduction band compared to those in the valance band of the pure semicon-
ductor. Thus a donor impurity makes it easier for the semiconductor to conduct.
Because the charges that produce this current (the so-called charge carriers) are
electrons, this type of doped semiconductor is called an n-type semiconductor (n
for negative).

Conversely, suppose we dope our pure germanium semiconductor with gallium
(outermost shell 4s24p1). Gallium has one less electron than germanium and thus

E

x
Allowed and filled

Forbidden

Allowed and empty

Additional filled
levels

Figure 3.6 Schematic representation of an
n-type semiconductor.
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Figure 3.7 Schematic representation of a p-type
semiconductor.

has a vacancy in its highest energy level. Such an impurity is called an acceptor. The
effect of an acceptor impurity is to add empty, localized energy levels to the band
structure. In this case, it is desirable to have these additional energy levels located
just above the valance band, as shown in Fig. 3.7. It is then easy for electrons from
the valance band to move up into these empty levels. But since these levels are
localized, the promoted electrons cannot move through the material as they must
in order to contribute to the current. The holes left behind in the valance band, on
the other hand, can move throughout the material since the valance band energy
levels are not localized. We thus can again have an enhanced level of current due
to the impurity, but now the current is produced by the positive hole motion. This
type of doped semiconductor is thus called p-type.

Note that both n-type and p-type semiconductors are electrically neutral just
as the atoms that make up the material are electrically neutral; the “n” does not
stand for negatively charged, but for negative charge carriers, and similarly for the
“p.” In addition, although the current is carried predominately by electrons in the
n-type semiconductor, there are still a few holes produced by electrons that are
promoted from the valance band to the conduction band, so a small portion of the
current is carried by holes, even in the n-type materials. The electrons in the n-type
material are called majority charge carriers, while the holes are called minority
charge carriers. Conversely, in p-type material, the current is predominately carried
by the hole motion, but a few electrons promoted from the valance band to the
conduction band also contribute, so the holes in a p-type material are the majority
charge carriers while the electrons are the minority charge carriers.

3.1.4 The p-n junction

Now we consider what happens when we bring together a piece of n-type semi-
conductor and a piece of p-type semiconductor. We represent our two pieces as
shown in Fig. 3.8. The n-type material has more electrons in its conduction band
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Figure 3.8 n- and p-type semiconductors
before assembly.

and the p-type material has more holes in the valance band. For the n-type material,
the number of electrons in the conduction band decreases with energy because it
is harder for the electrons to be promoted to these higher levels (we will quantify
this in a moment). Similarly, there are fewer holes at the higher hole energy levels
(remember, hole energy increases downward in this diagram).

When the two materials are brought together, the higher density electrons in the
n-material will diffuse into the p-material where the density of electrons in the con-
duction band is lower. The opposite happens for the high density holes in the
p-material; they diffuse into the n-material. (Because the behavior of electrons and
holes is analogous, from now on we will focus our attention on the electrons alone.)
This diffusion of charges leads to a charge imbalance, with excess electrons accu-
mulating in the p-material. As this continues, an electric field builds up at the
junction pointing from the n- to the p-material, and this field opposes further dif-
fusion of electrons. In the end, the field adjusts itself so that an equilibrium is
established and the flow of electrons from n- to p-material is the same as that from
p- to n-material. The region near the p-n junction where this diffusion takes place
is called the depletion region because the density of the charge carriers (electrons
in the n-material and holes in the p-material) is markedly reduced.

What does all this do to the band structure? The electric field E at the junction
requires a step in the electrostatic potential V (recall E = −dV/dx) and this produces
an opposite step in the electron energy (since energy E = qV , and q for an electron
is negative). Thus, in equilibrium, the band structure of the p-n junction will appear
as shown in Fig. 3.9. The energy levels shift up by an amount �E going from the
n-material to the p-material. The magnitude of �E will be just enough to insure
that the flow of electrons in each direction (f1 and f2 in the figure) is balanced.
Electrons in the p-material that make their way to the junction have no trouble
moving into the n-material and produce an electron flow f2. Similarly, electrons in
the n-material that make their way to the junction produce an electron flow f1 into
the p-material. Originally, f1 is greater than f2 because there are more electrons on
the n-side than on the p-side. The energy band shift, however, prevents some of
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n p Figure 3.9 An unbiased p-n junction.

the n-material electrons from moving into the p-material because this would place
them in the forbidden band of the p-material (note that the electrons must move
straight across the diagram since their energy stays constant). Only those n-side
electrons with energy higher than the top of the p-material forbidden band can
move into the p-material, and by adjusting �E this flow can be made to match f2.

To quantify this, we note that the electrons in the conduction band have been
promoted to that level by thermal energy. A basic result from thermal physics says
that the density of particles F with energy E in a system at temperature T is given by

F = Ae−E/kT (3.1)

where A is a normalization constant and k is Boltzmann’s constant.1 Then the
number of particles N (here, electrons) with energy above a level E0 + �E is then

N = A
∫ ∞

E0+�E
e−E/kT dE = −AkT

(
e−∞ − e−(E0+�E)/kT

)
= AkTe−E0e−�E/kT .

(3.2)

Here E0 would correspond to the energy at the bottom of the conduction band.
Since the flow of electrons f1 will be proportional to this number, we get

f1 = Ce−�E/kT (3.3)

where we have grouped all the constants into C. Since, in equilibrium, there is no
net flow of electrons, we must also have

f2 = Ce−�E/kT . (3.4)

1 This is only approximately correct. A more rigorous approach would use the Fermi–Dirac distribution
for F.
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Figure 3.10 Reverse bias of the p-n junction.

Now let’s examine what happens when we apply an external voltage V0 to our
p-n junction. If the negative side of our voltage is applied to the p-material and the
positive side to the n-material, we get the situation shown in Fig. 3.10. The energy
levels on the p-side have been raised by an amount eV0, where e is the charge of an
electron. This will make it harder for electrons to flow from the n- to the p-material,
and this is consistent with the notion that electrons will tend to be repelled from the
negative bias on the p-side. Quantifying this effect, we see that the flow of particles
from the n-side to the p-side will now be

f1 = Ce−(�E+eV0)/kT . (3.5)

The shift in energy levels will have no effect, however, on the flow f2 of electrons
from the p- to the n-side, so this remains the same as given in Eq. (3.4). There is
thus now a net flow of electrons of

fnet = f1 − f2 = Ce−�E/kT
(

e−eV0/kT − 1
)

. (3.6)

For room temperature, kT ≈ 0.025 eV, so for any appreciable voltage V0, the term
exp (−eV0/kT) → 0 and we have

fnet ≈ −Ce−�E/kT . (3.7)

Note that for this case (called the reverse biased case), the net flow is independent
of applied voltage V0 but strongly dependent on temperature (cf. Eq. (3.7)). Also,
since the energy step in the band structure is larger than in the equilibrium case,
more charge carriers are required to support it and the depletion layer is widened.

Now we apply an external voltage V0 to our p-n junction such that the negative
side of our voltage is applied to the n-material and the positive side to the p-material.
This is called the forward biased case. For forward bias, we get the situation shown
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Figure 3.11 Forward bias of the p-n
junction.

in Fig. 3.11. The step in the energy levels is now reduced to �E − eV0, and this
will make it easier for electrons to flow from the n- to the p-material. This, again,
is consistent with the notion that electrons will tend to be attracted to the positive
bias on the p-side. As before, f2 is unaffected by the bias, but f1 changes to

f1 = Ce−(�E−eV0)/kT (3.8)

and the net flow becomes

fnet = f1 − f2 = Ce−�E/kT
(

eeV0/kT − 1
)

. (3.9)

Thus, for any appreciable forward bias V0, the first term in parentheses of Eq. (3.9)
dominates and we have an exponential increase in the flow of electrons from the
n-side to the p-side. Since the energy step in the band structure is smaller than in
the equilibrium case, the depletion layer is narrowed.

We can now combine these two cases by defining the forward bias as a positive
applied voltage Vd. We also return to using current to describe the flow of charge,
noting that the current will be in the opposite direction of the net electron flow. The
behavior of our p-n junction (called a diode) can then be summarized as

I = I0

(
eeVd/kT − 1

)
(3.10)

where I0 ≡ C exp (−�E/kT). A graph of this result is shown in Fig. 3.12. I0 is
usually very small compared to a typical forward bias current and is thus often
approximated as zero.

The electronic symbol for this device is shown in Fig. 3.13 along with the bias
polarity and current direction for forward biased operation. We have also indicated
which end of the diode corresponds to the n- and p-material. Note that the filled
triangle of the symbol points in the direction of the forward biased current. The
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Figure 3.12 I –V characteristic of a diode.
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I Figure 3.13 Electronic symbol for a diode.

n-side of the diode is sometimes referred to as the cathode while the p-side is called
the anode.

3.1.5 Breakdown

If the p-n junction is strongly reverse biased, f1 ≈ 0 and f2 is limited by the presence
of electrons in the p-material conduction band due to thermal excitation. At some
point, however, the increasing electric field in the depletion layer causes two types
of breakdown phenomena which strongly increase the reverse current.

1. Avalanche breakdown. In this type of breakdown, electrons from the p-side
are accelerated to high enough kinetic energy to ionize other atoms in the
depletion layer, thus producing a new electron-hole pair. The new electron is
also accelerated and can produce more pairs, and so on. The resulting chain
reaction adds many electrons to the conduction band and thus rapidly increases
the current.

2. Zener breakdown. In this case, the electric field in the depletion layer becomes
large enough to produce ionization directly, essentially tearing the atoms apart.
This process again produces copious electron-hole pairs and rapidly increases
the current.

This effect modifies the diode I–V characteristic as shown in Fig. 3.14. Note that
while the breakdown current increases rapidly, the voltage stays fairly constant.
The magnitude of this voltage is called the breakdown voltage. Despite the name,
both types of breakdown are non-destructive. That is, the diode can be operated in
breakdown mode without destroying it, and, as we shall see later, certain circuits
deliberately use the steep rise of the reverse current to achieve useful results.
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Figure 3.14 Diode I –V characteristic
showing breakdown at large reverse bias.
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Figure 3.15 Photon emission due to electron-hole
recombination.

3.1.6 Photon emission and absorption

Another interesting consequence of our band theory model is the possibility of
producing light from a p-n junction or changing the electrical properties of the
junction through photon absorption (Fig. 3.15). Recall that, for an atom, a photon
is emitted when an electron moves from a higher energy state to a lower one. A
similar phenomenon can occur in our p-n junction. When the diode is forward
biased, lots of electrons and holes flow in opposite directions through the depletion
region. Since the holes represent vacancies in a lower energy level, it is possible for
the electron to jump to one of these lower energy levels while a photon is emitted
to conserve energy. If the diode is constructed so that these photons can exit the
material, we have a light source. This is the basis of the ubiquitous light emitting
diode or LED, which is used as an indicator light on many modern electronic
devices.

Photons can also be absorbed by our p-n junction. In this case, an incoming
photon promotes an electron from the valance band to the conduction band, thus
producing a new electron-hole pair. If these new pairs are produced in significant
numbers, they can significantly alter the ability of the junction to conduct electricity.
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This is the basis of the photo-diode, which is used in many applications as a light
detector.

3.2 Diode circuits

3.2.1 Basic diode circuit analysis

The semiconductor diode introduced in the last section has an unusual I–V char-
acteristic: it conducts readily for forward bias but does not conduct very much for
reverse bias (assuming the reverse bias is less than the breakdown voltage). As we
will see, this unusual behavior allows us to use the diode for many purposes, but
it also complicates the analysis of diode circuits. To see why this is true, consider
the simple diode circuit shown in Fig. 3.16.

Applying KVL to this circuit we obtain

V0 − IRL − Vd = 0 (3.11)

where Vd is the voltage across the diode. We also know the relationship between
the current through the diode and the voltage across the diode:

I = I0

(
eeVd/kT − 1

)
. (3.12)

Solving Eq. (3.11) for I and combining with Eq. (3.12) yields

I = V0 − Vd

RL
= I0

(
eeVd/kT − 1

)
. (3.13)

In this last equation, the only unknown is Vd. If we knew this, we could plug into
any of the other equations and obtain I and we would be done. But Eq. (3.13) is a
transcendental equation and cannot be solved analytically for Vd, and herein is the
complicating factor in the analysis of diode circuits.

There are two standard ways of dealing with transcendental equations. One is
to solve the equation numerically using a technique such as Newton’s Method.

V0

RL

Vd

I

Figure 3.16 Simple diode circuit.
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Figure 3.17 Diode I –V characteristic and load line for
the circuit of Fig. 3.16.

A second way is to solve the equation graphically, and this will help us to see
some of the key features of the solution. To proceed, we note that Eq. (3.13) gives
two equations for I as a function of Vd, so we plot both of these on the same
graph. The intersection of the two curves tells us the value of Vd (and thus I)
that satisfies both equations. In electronics, this solution is called the operating
point.

This procedure is shown in Fig. 3.17. The diode I–V characteristic (Eq. (3.12))
is plotted along with the linear equation I = (V0 − Vd)/RL. This latter equation
is referred to as the load line, and this graphical solution is often called the load
line method in electronics. Note that the x- and y-intercepts for the load line are V0
and V0/RL, respectively, and the slope of the line is −R−1

L . We can thus imagine
what would happen to the solution if V0 or RL was varied. For example, if V0 is
varied, both intercept points will move along their respective axes while the slope
of the line stays fixed. If V0 increases, the operating point will move up the diode
characteristic and the current will rapidly increase. Also note that the analysis is
not restricted to positive V0. If V0 is negative, the x- and y-intercepts will be on
the negative portion of the x- and y-axes and the operating point will be on the
relatively constant, reverse biased portion of the diode characteristic, thus showing
that little current flows in the circuit for this case.

While the load line method offers some insights into the detailed behavior of
the circuit, it is cumbersome to use for routine circuit analysis. It is thus common
practice to employ a simplified model of the diode I–V characteristic that allows
for analytical solutions. In this text, we will use the simplified characteristic shown
in Fig. 3.18. For Vd < 0.6 V, the diode current is zero. At Vd = 0.6 V, the
characteristic becomes a vertical line. This simplified model keeps two of the
important features of the real characteristic curve: the current rises rapidly for
Vd ≈ 0.6 V and is small otherwise. Our simplified model may also be expressed in
words: the diode will not allow current flow unless it is forward biased; when it is
forward biased, the voltage drop across the diode is 0.6 V.2

2 The value 0.6 V is appropriate for diodes made from silicon, the most common material.
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Figure 3.18 Simplified version of a diode I –V
characteristic.
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Figure 3.19 Load line plotted on a simplified diode I –V
characteristic.

To see how this simplifies our circuit analysis, let’s return to the circuit of
Fig. 3.16. Assuming the diode is forward biased, Eq. (3.11) now yields

I = V0 − 0.6
RL

(3.14)

where we have used our approximation Vd = 0.6 V. Since we know V0 and RL, we
can obtain the circuit current I directly without the use of a graphical or numerical
method.

Several caveats are now in order. We have used the approximation Vd = 0.6 V
for the forward biased diode. Two other common approximations are often seen
in textbooks. The first simply uses Vd = 0.7 V for the diode voltage. Since the
actual diode voltage depends on the current, it is hard to argue persuasively for
either value, so we simply note the difference in convention. On the other hand,
some textbooks use Vd = 0. While this makes analysis even easier, in this case the
approximation loses important information: a forward biased diode has a non-zero
voltage drop. Without this understanding, some laboratory observations will be
puzzling and some electronic circuits will seem without merit (we shall see some
examples later).

Another problem lies in our assumption of the diode being forward biased.
When we are doing circuit analysis, how do we know at the start if the diode will
be forward biased? What do we do if it is not? To answer these questions, we return
to the load line analysis. Figure 3.19 shows our simplified diode characteristic
plotted along with the load line. From this we see that in order to be forward biased
(and thus have an operating point on the vertical part of the diode characteristic),
we must have V0 > 0.6 V. If this is not true, the load line will cross the diode
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characteristic where I = 0 and give an operating point with Vd = V0. This is
consistent with our general voltage loop law notions: if the current in the circuit
is zero, there is no voltage drop across the resistor so the voltage across the diode
must be equal to the battery voltage.

An alternative tactic to use to avoid mistakes is to check your answer for con-
sistency. Suppose our circuit specified V0 = 0.4 V. We know from the previous
paragraph that this is not enough to forward bias the diode, but suppose we did not
know this and made the approximation Vd = 0.6 V. We proceed as before and get
Eq. (3.14), but plugging in V0 gives a negative current. Since this is impossible with
a positive voltage source and, furthermore, is inconsistent with our assumption of
a forward biased diode, this assumption must be incorrect.

3.2.2 Simple diode applications

To show how versatile the diode is, we give here several simple applications. The
first, shown in Fig. 3.20, is a voltage dropper. Before discussing the circuit, we
note the introduction of a new circuit symbol, the common or ground symbol. This
is shown connected to the right end of the resistor. Ground serves as a common
reference point for all other voltages referred to on the circuit diagram (recall that
voltage is always between two points). Thus, for example, V0 in this circuit is
the voltage relative to ground. This might be provided by a battery of voltage V0
connected between ground and the point labeled V0.

Now let’s get back the the voltage dropper. This might be used in a circuit
where you have available one voltage (say, a 9 V battery) and need a slightly lower
voltage. Each diode in the chain drops the voltage by approximately 0.6 V as
shown. Note that this circuit makes no sense if we use the approximation Vd = 0.

The next example is the limiter (or clipper) circuit shown in Fig. 3.21 which is
used to insure that the output voltage never exceeds a certain level, thus protecting
the circuitry that follows from high voltage spikes or fluctuations. The diodes only
come into play if they are forward biased; if a diode is not forward biased, no
current flows through it and the voltage across it is unrestricted, just as if the

V0 − 0.6
V0 − 1.2
V0 − 1.8

V0

Figure 3.20 Voltage dropper.
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Vin Vout

Figure 3.21 Diode limiter.

VbVb

Vin Vout

Figure 3.22 Variable diode clipper.

Vin Vout

+–

Figure 3.23 Diode clamp.

diode were not present. In order to forward bias a diode we must have the input
voltage magnitude greater than 0.6 V. When this happens one of the diodes begins
to conduct (depending on the polarity of the input voltage) and holds the voltage
across itself to 0.6 V. Thus the output voltage (which is taken across the diode) can
never exceed ±0.6 V. A variable limiting level can be achieved by adding a battery
to the circuit as shown in Fig. 3.22. Now when a diode conducts the output is held
to a level Vb + 0.6.

The clamp circuit shown in Fig. 3.23 is used to shift an AC signal by a constant
voltage. If the input voltage is less than −0.6 V, the diode can conduct and charge
up the capacitor to a voltage Vp − 0.6, where Vp is the peak value of the AC
voltage. Once this happens, the capacitor cannot discharge because to do so current
would have to flow through the diode in the wrong direction. From this point on,
therefore, the capacitor has a constant voltage across it with the polarity shown,
so Vout = Vin + Vc. The output voltage is thus shifted up by a constant amount.
An example case for a sinusoidal input is shown in Fig. 3.24. Finally, note that
the shift can be made negative by flipping around the diode so that the capacitor
charges with the opposite polarity.

Diodes are often used to protect switches in inductive circuits as shown in
Fig. 3.25. When the switch is closed, current flows through the inductor, which
might be, for example, the windings of an electric motor. The diode does nothing
at this point because it is reverse biased. If the switch is opened, the current that
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Vp
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t Figure 3.24 Clamped
sine wave.

Figure 3.25 Switch protection.

was flowing must come to an abrupt halt. Since the voltage across the inductor is
LdI

dt , the abrupt change in current produces a very large voltage, often large enough
to produce an arc across the opening switch. If the switch is used frequently, this
arcing will damage the switch. To prevent this, a diode is placed across the inductor.
The polarity of the large induced voltage is such as to forward bias the diode and
cause it to conduct, thus shorting out the inductor and protecting the switch.

Diodes can also be used to make logic circuits. An example of such usage
is shown in Fig. 3.26 where we employ AND logic to form a unanimous vote
indicator.3 The circuit has a number of switches (any number is possible) that are
connected to the 5 V supply when a person votes “yes” and connected to ground
when a person votes “no.” The indicator light requires 3 V to illuminate. If any
switch is connected to ground, a circuit is completed which forward biases the
diode connected to that switch. The voltage drop across that diode is then 0.6 V,

3 We will have much more to say about logic circuits when we study digital electronics in Chapter 8.
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Figure 3.26 Unanimous vote
indicator.

Vin

Vd

RL

I

Figure 3.27 Half-wave rectifier.

which is not enough to illuminate the light. If all the people vote “yes,” all the
switches are connected to 5 V, so none of the diodes can be forward biased, and it
is just as if the diodes were removed from the circuit. By choosing an appropriate
value for R, we can cause the light to illuminate under these conditions.

3.2.3 Rectification

A major use for the diode is rectification, or making an alternating signal unidirec-
tional. This is the first step in creating a DC power supply and is also used in AM
radio receivers and other circuits.

The simplest rectifier, the half-wave rectifier, is shown in Fig. 3.27. If we are
making a power supply, the AC signal source in this figure would represent the
secondary of a transformer which takes the AC voltage coming out of the wall
socket and changes it to another value suitable for our purpose. Except for the
voltage source, this circuit is identical to that considered before (cf. Fig. 3.16),
so the analysis used for that circuit can be employed here. Recall that the current
through the diode will be zero until the voltage source exceeds 0.6 V, after which
it will be

I = V0 − 0.6
RL

. (3.15)
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Figure 3.28 Half-wave rectifier
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Figure 3.29 Center-tapped
full-wave rectifier.

For a voltage source Vin = Vp sin ωt, then, we expect a current waveform like
that in Fig. 3.28, with peak value given approximately by Ip = (Vp − 0.6)/RL.
Note that the current flows only in one direction, as opposed to the alternating
direction of the current if the diode were not present. As a consequence, the current
(and, thus, the voltage across the load resistor) now has a non-zero average. If we
think of the goal of creating a constant voltage supply, this is a step in the right
direction. Of course, our waveform is still very bumpy and far from the constant
voltage desired of a power supply, but we will see later how to fix this.

Our half-wave rectifier is simple (only uses one diode), but not very efficient. We
essentially throw away half of our AC voltage and use only the part that forward
biases our diode. The resulting waveform is also very bumpy, and this will make it
more difficult to smooth out. An attempt to address these problems is shown in the
center-tapped full-wave rectifier circuit of Fig. 3.29. This circuit uses two diodes
and a specially altered transformer. The transformer has an additional wire attached
at the middle of the secondary windings. This is called the center tap and gives the
transformer user the option of using two identical sets of secondary windings.

The resulting waveforms for our center-tapped full-wave rectifier are shown
in Fig. 3.30. We show the voltage for each half of the secondary relative to the
grounded center tap. Note that these two voltages are 180 degrees out of phase;
the voltage induced in each is the same, but we have tied different ends of the two
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Figure 3.30 Center-tapped full-wave
rectifier waveforms.

secondaries to ground, thus creating the inversion. Also, to have a fair comparison
with our half-wave circuit, we assume the signal from each half of the secondary
has a peak amplitude of Vp/2 since it uses only half of the total secondary windings.
The circuit can then be viewed as essentially two half-wave rectifiers. When V1
is positive, a current I1 flows through the top diode, through the load resistor
RL and back through the center tap. On alternate half-cycles of the AC signal, a
current I2 flows through the bottom diode, through the load resistor RL and back
through the center tap. The key feature is that the load resistor now has current
flowing through it on both half-cycles of the AC signal, and that current always
flows in the same direction. There has been a cost, however, for obtaining a less
bumpy current through the load resistor: the peak value of the current is now
Ip =

(
1
2Vp − 0.6

)
/RL since we are using only half of the transformer at a time.

We have thus not really fixed the efficiency problem.
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Figure 3.31 Full-wave bridge rectifier.
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Figure 3.32 Full-wave bridge rectifier
waveforms.

Our final rectifier circuit uses four diodes in a full-wave bridge rectifier config-
uration, as shown in Fig. 3.31. No center tapping of the secondary is necessary, so
the voltage source again has peak value Vp as shown in the waveforms of Fig. 3.32.
When the voltage source is positive (and exceeds the 1.2 V needed to turn on
two diodes), current I1 goes through the upper right diode, down through the load
resistor, and back to the transformer through the lower left diode. When the voltage
source is negative (and, thus, the bottom of the secondary is positive relative to the
top), current flows through the bottom right diode, down through the load resistor,
and back to the top of the secondary through the upper left diode. Now current
flows through the diode on each half-cycle and the full secondary of the transformer
is used. The only downside is that we need four diodes (not a problem since silicon
diodes are cheap) and that we lose 1.2 V due to the voltage drop across two diodes
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rather than one. Thus the peak value of our load current is Ip = (Vp − 1.2)/RL.
For most circuits, this is a reasonable trade-off for the increased efficiency and
reduced load current variation obtained, so this rectifier circuit is the most popular,
and the full-wave bridge rectifier can be purchased as a unit in lieu of buying four
individual diodes.

3.2.4 Power supply filters

While the waveforms resulting from rectification have a non-zero average, they
still vary in time. If we want to make a constant voltage power supply, we still have
some work to do. The next step in this process is to smooth out the bumps in our
rectified signal by employing a filter. We can think of the rectified signal as having
two parts: a DC part, corresponding to the average value of the signal, and an AC
part, corresponding to the time-varying part left after we have subtracted the DC
part. Our goal, then, is to reduce the AC part. It is useful to think in terms of Fourier
analysis: the DC part would be the zero-frequency component of the signal and the
AC part would be made up of various harmonics of 2π/T , where T is the period
of the signal. We then wish to filter out the high frequencies while letting the low
frequency (i.e., zero) pass through, and this leads us to consider various types of
low-pass filters.

The simplest filter consists of a capacitor placed across the output of the rectifier.
This is shown for the full-wave bridge rectifier in Fig. 3.33. When the output of
the rectifier is positive, the capacitor charges up and eventually reaches the peak
value of the rectified signal. When the rectifier output decreases from its peak,
the capacitor cannot follow because this would involve a discharge through the
diodes; this cannot happen because of the orientation of the diodes. The capacitor
can discharge, however, through the load resistor RL, and the time scale for this
process is set by the time constant RLC. If we make this time constant large
compared to the period of the rectified signal, there will be little change in the
capacitor voltage before it is charged up again by the next cycle of the rectifier

C RL

Figure 3.33 Simple capacitor filter.
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Figure 3.34 Simple capacitor filter waveforms.

output. This is shown in Fig. 3.34. Note that the voltage across the capacitor (or
across the load) is now less bumpy and more like a constant.

When evaluating the quality of a power filter circuit, it is common to examine the
ripple factor, r, which is defined as the ratio of the rms value of the AC component
of the filtered signal to the DC or average value of the signal:

r = Vrms,AC

VDC
. (3.16)

For the simple capacitor filter, it can be shown that, for RLC 
 T , the ripple factor
is given by

r ≈ T
2
√

3RLC
= 1

2
√

3fRLC
(3.17)

where f is the frequency of the rectified signal. Examining this result, we see that r
decreases with increasing C, RL, and f . This is reasonable since increasing any of
these parameters will decrease the amount the capacitor discharges. It can also be
shown that, under these conditions, the DC part of the rectified signal is given by

VDC ≈ Vp − VpT
2RLC

≈ Vp − IDC

2fC
(3.18)

where Vp is the peak value of the rectified signal and, in the last equality, we have
used the approximation IDC ≈ Vp/RL.

This last result draws attention to another factor to consider when judging the
quality of a voltage source, the regulation. An ideal voltage source will supply a
constant voltage regardless of the current supplied. As the last part of Eq. (3.18)
shows, this is not the case for the simple capacitor filter: here VDC decreases linearly
with IDC, although this non-ideal behavior improves with increasing f and C. We
say that this power supply is poorly regulated because the output voltage depends
on the output current.

As we will see in the next sections, neither ripple nor poor regulation is a
huge problem these days because of the easy availability of solid state regulators.
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Table 3.1 Summary of power filter characteristics

Name VDC Ripple factor r

Simple RC Vp − IDC
2fC

1
2
√

3fRLC

RC π -section Vp −
(

1
2fC1

+ R
)

IDC
1

4π
√

3f 2C1C2RRL

LC or L-section
2
π

Vp

√
2

3ω2LC

C1

R

C2 RL
From

rectifier

Figure 3.35 The RC π -section filter.

L

C RL
From

rectifier

Figure 3.36 The LC or L-section filter.

Before we move on, however, it is worth giving two other examples of power
supply filters, each having some desirable features. These are shown in Figs. 3.35
and 3.36 and expressions for the DC voltage and ripple factor are given in Table 3.1
(these approximate expressions are all derived under the assumption that the ripple
is small, which is usually the desired condition). Note that both the π -section
and L-section filters have ripple that goes like 1/f 2, so these configurations are
advantageous when the rectified signal has a high frequency (as might be the case
with, for example, a gasoline powered generator). Also note that the L-section filter
has good regulation: the DC voltage does not depend on the DC current at all.

3.2.5 Zener diodes

Although the L-section filter has perfect regulation in theory (i.e., VDC has no
dependence on IDC), in reality the inductor will have some resistance and this will
cause the regulation to degrade. In practice, one uses special circuits on the output
of the power filter to provide improved regulation. There are various circuits that
can be employed in this effort, but the simplest involves a special kind of diode
called a zener diode.
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CathodeAnode Figure 3.37 Electronic symbol for a zener diode.
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Figure 3.38 Zener diode circuit.

Recall that a diode with sufficient reverse bias will undergo breakdown. When
this happens, the reverse current through the diode rises rapidly while the voltage
across the diode remains roughly constant. This is reminiscent of our goal for a
well regulated power supply: a constant voltage that does not vary with current.
In fact, this property is so useful that special diodes are manufactured that have
extremely sharp I–V curves at breakdown. The symbol for this zener diode is
shown in Fig. 3.37. Such diodes are specified by their breakdown voltage Vb and
their maximum power rating Pmax = VbImax.

Consider the typical zener diode circuit shown in Fig. 3.38. The voltage Vs and
resistance Rs can be thought of as representing the Thevenin equivalent for the
output of the filter circuit. To this we attach the parallel combination of a zener
diode and a load resistor. Note that the zener is installed with an orientation that
looks backwards: if this were a normal diode, it would never conduct since the
polarity of Vs will not allow current to flow in the direction of the diode triangle.
In this case, however, we are interested in operating the diode in its breakdown
mode, so the reverse orientation is appropriate.

Applying our usual circuit laws to this circuit, we obtain Vs − IsRs − Vd = 0,
Is = Iz + IL, and Vd = ILRL, where Vd is the voltage across the diode and Iz is the
current through the diode. Combining these we obtain

Vs − Vd

Rs
= Is = Iz + Vd

RL
(3.19)

which, after some manipulation, can be cast in the form

Vs

Rs
−
(

RL + Rs

RsRL

)
Vd = Iz. (3.20)

Since Iz is a complicated function of Vd, we again turn to a graphical load line
analysis. The straight line resulting from Eq. (3.20) is plotted along with the diode
I–V characteristic in Fig. 3.39. Because we normally intend to use the zener diode
in reversed orientation, we have inverted the normal diode I–V characteristic.
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Vb Figure 3.39 Zener diode circuit load line analysis.

Referring to Figs. 3.38 and 3.39, we can draw a number of conclusions.

1. In order for the zener to operate in breakdown mode (i.e., for the operating point
to be located on the breakdown portion of the I–V characteristic), we must have(

RL

Rs + RL

)
Vs > Vb (3.21)

where Vb is the breakdown voltage.
2. The following points apply while the zener is in breakdown mode.

(a) As always, Is = Iz + IL. When in breakdown mode, Is = (Vs − Vb)/Rs, so
if Vs is fixed, so is Is. Thus if we vary the load resistance (and thus IL), Iz
must change in the opposite way. If IL increases, Iz will decrease, and vice
versa.

(b) In order to handle any possible case (including RL → ∞), the zener diode
should be rated high enough to handle all of Is.

(c) If the voltage Vs changes, the voltage across the load remains constant at
Vb. This is just what we want for our DC power supply. The load current
IL = Vb/RL remains fixed, too. Any changes in Vs are taken up by changes
in Is and Iz.

3. If the zener is reverse biased but not in breakdown mode (i.e., if Eq. (3.21) is
not satisfied), the operating point will be Iz ≈ 0 and

Vd =
(

RL

Rs + RL

)
Vs. (3.22)

This is just the voltage divider equation. Hence in this case the circuit operates
as if the zener were not present.

4. If the zener is forward biased, it acts like a regular diode.
5. While the breakdown portion of the I–V characteristic is drawn in Fig. 3.39

as a vertical line (i.e., with infinite slope), it actually has a finite slope. This
is specified by quoting the inverse of the slope, �Vd/�Iz. This is called the
dynamic resistance and is typically about 1 � for a zener diode.
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The zener diode has other applications beyond its use as a regulator. Two exam-
ples are given in Figs. 3.40 and 3.41. The zener limiter circuit, like the limiter
and clipper circuits we have seen before, places limits on the output voltage. Two
zener diodes are connected in series across the output with opposite orientations as
shown in Fig. 3.40. When the input voltage is positive and exceeds Vb + 0.6 V, the
diodes conduct, with the top diode forward biased (and thus with a voltage drop of
0.6 V) and the bottom diode reverse biased and in breakdown mode. If the input
voltage increases, the output is held at Vb + 0.6 V. Similarly, if the input is more
negative than −(Vb + 0.6 V), the bottom diode is forward biased with 0.6 V drop
and the top diode is reverse biased with a voltage drop of Vb. Thus the output can
never be less than −(Vb + 0.6 V) or greater than Vb + 0.6 V.

Figure 3.41 shows how zeners can be used to make a simple voltage indicator.
The circuit makes use of the fact that zener diodes can be obtained with a variety of
breakdown voltages, and the diodes in the circuit are labeled with their respective
breakdown voltages. As the input voltage increases, we eventually reach the point
where the leftmost zener can break down, and the resulting current flow turns on
the first light. At a higher voltage, the next zener also breaks down and its light
also turns on, and so on. Thus for higher input voltage, more of the indicator lights
are on. This type of display is often seen on stereo systems and cell phones to give,
for example, an indication of the received signal strength.

3.2.6 Regulators

While a zener diode can be employed to make a simple and inexpensive regulator,
its non-zero dynamic resistance means that the output voltage will still vary slightly
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Table 3.2 A sample of fixed and adjustable voltage regulators
The values for Iout and Pmax are typical. Actual values depend on heatsinking
and ambient temperature.

Number Type Vout(V) Iout(A) Vdrop(V) Pmax(W)

LM7805CT Fixed +5 1.5 30 1.7
LM7815CT Fixed +15 1.5 20 1.7
LM7905CT Fixed −5 1.5 25 1.7
LM7915CT Fixed −15 1.5 30 1.7
LM317T Adjustable 1.2 to 37 1.5 40 20
LM337T Adjustable −1.2 to −37 1.5 40 15

1 μF 0.1 μF
Vout

Vin
from
filter

Com

In Out

Figure 3.42 Usage example for a fixed
voltage regulator.

with output current. For more demanding applications, a more sophisticated voltage
regulator is employed. While we are not ready to understand the inner working of
these devices, we can understand how to use them to finish our DC power supply
design. A very small sample of typical voltage regulators is given in Table 3.2.

Regulators are specified by their output voltage (or, in the case of variable types,
output voltage range) and their power rating Pmax = VdropIout, where Vdrop is the
maximum voltage difference between the output and the input, and Iout is the output
current. They usually come in a package with three leads, and a typical circuit for a
fixed output regulator is shown in Fig. 3.42. The input voltage would typically be
the output of the power filter. In order for the regulator to work properly, this input
voltage must at all times be a certain level (typically 3 V) above the level of the
output voltage.4 On the other hand, you do not want the input voltage to be too high
above the output because this would give a large Vdrop and thus necessitate a large
power rating (and increased expense). The capacitors on the input and output of
the voltage regulator are specified by the manufacturer to eliminate high frequency
noise and provide stability for the regulator.

Regulators with variable output voltage are also available, and a typical circuit
for this type is shown in Fig. 3.43. The variable resistor R2 provides the adjustment
and the resulting output is given by Vout = 1.25(1+R2/R1). Rules similar to those

4 This assumes a positive output. For negative output, the input must be 3 V below the output level.
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Figure 3.45 I –V characteristics for the SCR.

for the fixed regulator apply here, so the maximum output voltage will be about 3 V
below the minimum input voltage. Because the output is now variable, Vdrop will
also be variable, so one must be careful to choose a power rating that is sufficient
for the worst case.

3.2.7 The silicon controlled rectifier

The silicon controlled rectifier or SCR is, as the name implies, a diode that can
be, to some extent, controlled. The schematic symbol for this device is shown in
Fig. 3.44. The control is provided by a third lead called the gate.

As with most electronic devices, the behavior of the SCR can be seen in its I–V
characteristic, but now, since there is a third independent lead, there are an infinite
number of I–V characteristics, one for each value of the gate parameter. In such
cases, it is customary to display a family of curves for representative values of the
control parameter on the same plot. This is shown for the SCR in Fig. 3.45. The
relevant control parameter is the current Ig flowing into the gate.

The SCR can be thought of as having an “on” state and an “off” state. The device
is normally off. As the voltage across the diode Vd is increased, the diode stays off
(allowing no current flow) until a critical voltage Vcrit is approached. The current
then increases slightly until the critical voltage is reached, at which point the diode
switches to its on state. Now it operates like a normal diode, with a large forward
current and a small forward voltage drop. The SCR will remain in this on state
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(regardless of gate current) until something causes the diode current to drop below
a critical level, Icrit. It will then return to the off state. The gate current, in effect,
determines the value of Vcrit, and this value decreases as the gate current increases,
as shown in Fig. 3.45. The value of the gate current necessary to turn on the SCR
is typically much smaller than the maximum current allowed through the on-state
diode, so the SCR allows the user to control a high power circuit with a low power
circuit.

The SCR can be used in a variety of ways. Figure 3.46 shows its use as an
electrical switch in a pulsed high magnetic field system. A bank of capacitors is
charged to a high voltage.5 The SCR in the circuit is chosen so that the high voltage
is less than Vcrit0. This prevents current from flowing through the field coils while
the gate current is zero. When the user is ready, a current pulse is applied to the
gate that is sufficient to lower the critical voltage below the voltage across the
SCR. The SCR thus switches to its on-state and the capacitors discharge through
the magnetic field coil, producing the desired high magnetic field. If the resistor R
is large enough, the current through the SCR will eventually fall below Icrit and the
SCR will switch off.

A second example of SCR usage is shown in Fig. 3.47 where we show a simple
DC motor speed control. The speed of a DC motor depends on the average of the
current in the circuit. Here a pulse is applied to the gate at an adjustable time. When
the pulse is applied, the SCR turns on and rectifies the sine wave input voltage.
The earlier the pulse is applied, the larger the average current, and the higher the
speed of the motor. When the rectified current goes to zero, the SCR turns off and

5 A high voltage is used to maximize the stored energy since E = 1
2 CV 2.
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Figure 3.49 Control of the SCR switch time with an
RC circuit.

awaits the next gate pulse. Some representative waveforms are shown in Fig. 3.48.
This circuit can be used to control anything that depends on the average current in
the circuit.

The DC motor control requires additional circuitry to produce the required gate
pulse. The next example (see Fig. 3.49) shows how the SCR can be controlled
without elaborate external circuitry. An adjustable RC circuit is used to control the
amplitude and the phase of the voltage applied across the gate-cathode junction of
the SCR. The diode attached to the gate protects the SCR gate from reverse bias.

From our previous analysis of the RC circuit driven by a sine wave of the form
Vp sin ωt, we know that the voltage across the capacitor is

Vc = Vp√
1 + (ωRC)2

sin
(
ωt + φ − π

2

)
(3.23)
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Vin

Vp

t

Vc

Vp

tVsw

IL

t

Figure 3.50 Typical waveforms for the circuit of
Fig. 3.49. The dotted curves show the case R ≈ 0
and the solid curves an intermediate value of R .

where
φ = tan−1

(
1

ωRC

)
. (3.24)

When R is adjusted to its minimum (R ≈ 0), the amplitude of the voltage across the
capacitor is maximum and the phase of this voltage relative to that applied across
the SCR is near zero. As a result, the SCR switches on as soon as the voltage across
the SCR becomes positive, and the load RL receives a maximum average current.
This is shown in Fig. 3.50, where we assume a gate voltage Vsw is necessary to
turn the SCR on. When R is adjusted towards its maximum, the amplitude of the
voltage across the capacitor is reduced and φ ≈ 0 so the phase of this voltage is
shifted by −π

2 . This combination of reduced amplitude and increased phase shift
delays the SCR firing time by half a period, and by this time the voltage across
the SCR has become negative so the SCR never turns on. Intermediate values of R
produce intermediate turn-on times and one of these is shown in Fig. 3.50. Thus by
adjusting R one can vary the average current through the load from its maximum
to zero.
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EXERCISES

1. Sketch the energy band configuration for a p-n juntion under the following
conditions: no bias, reverse bias, and forward bias. On each, indicate the
direction of the net current.

2. Sketch the output waveforms expected when a 100 Hz, 5 Vp sine wave is applied
to each of the circuits in Fig. 3.51. Specify important voltage levels and time
scales. The input is on the left and the output is on the right.

3. Sketch the output waveforms expected when a 1000 Hz, 20 Vpp square wave
is applied to each of the circuits shown in Fig. 3.51. Specify important voltage
levels and time scales. The input is on the left and the output is on the right.

6.3 V

5.0 V3.0 V

(a)

(b)

(c)

(d)
Figure 3.51 Circuits for Problems 2
and 3.
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4. Determine the necessary values of the components (R, C1, and C2, and Vp for
the transformer output) for the circuit of Fig. 3.52, with the requirements that the
load voltage be 15 V with 0.01% or less ripple and the load current be 100 mA.

C1

R

C2 RLFrom
line Figure 3.52

Circuit for
Problem 4.

5. (a) In the circuit of Fig. 3.53, what would happen if the load resistor were
shorted? (b) What would happen if the load resistor were removed? Support
your answers with calculations. Hint: think in terms of power ratings.

5.1 V1
4 W RL

100 �

1
2 W

12 V

Figure 3.53 Circuit for Problem 5.

6. (a) In the zener diode voltage regulator shown in Fig. 3.54 determine the range of
load resistances over which the circuit gives a constant Vout if Rs = 1500 � and
Vs = 150 V. Assume the diode breakdown voltage is 100 V and the maximum
rated current is 100 mA. (b) If RL is fixed at 10 k�, over what range of input
voltages does the circuit regulate?

−

RL

Rs+

VoutVs
Figure 3.54 Circuit for
Problems 6 and 7.

7. Let Vs = 30 V, Rs = 300 �, and the zener breakdown voltage be 15 V in the
circuit shown in Fig. 3.54. Suppose we vary the load resistor RL in order to
vary the current through RL (the load current). Plot the output voltage of the
regulator as a function of load current from 0 to 75 mA. Over what load current
range is the regulator effective?
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8. Design a variable voltage power supply capable of supplying 250 mA with
output voltage range 5 to 15 V. Specify the relevant details (e.g., values, model
numbers, power rating) for all the components you use.

FURTHER READING

James J. Brophy, Basic Electronics for Scientists, 5th edition (New York: McGraw-Hill,
1990).

Charles Kittel, Introduction to Solid State Physics, 4th edition (New York: Wiley, 1971).
John E. Uffenbeck, Introduction to Electronics, Devices and Circuits (Englewood Cliffs,

NJ: Prentice-Hall, 1982).
M. Russell Wehr, James A. Richards, Jr., and Thomas W. Adair, III, Physics of the Atom,

4th edition (Reading, MA: Addison-Wesley, 1985).



4 Bipolar junction transistors

4.1 Introduction

The silicon controlled rectifier introduced in the last chapter was the first device
we have seen that offered some measure of electronic control: the gate current
determined the details of the I–V characteristic. This control, however, was fairly
limited. In the examples we considered, the gate current determined the time at
which the SCR switched to its on-state. Once the SCR was turned on, however, its
behavior was no longer related to the magnitude of the gate current, and removing
the gate current altogether would not return the SCR to its off-state.

We now turn to a device with a greater measure of electronic control: the
transistor. Like the SCR, the transistor allows the user to control a large current
through the device with a smaller control signal. But with the transistor, one can
have proportional control; that is, the amount of current through the device is
proportional to the control signal. This allows one to amplify signals, which is
fundamental to all types of electronic communication.

Transistors come in two basic types: bipolar junction transistors (BJTs) and
field-effect transistors (FETs). This chapter will cover the fundamentals of BJTs
and also introduce some common terminology for transistor amplifiers. FETs are
addressed in Chapter 5.

4.2 Bipolar transistor fundamentals

A bipolar transistor can be thought of as a sandwich of n-type and p-type semicon-
ductors. Of course, there are two ways to form this sandwich: a piece of p-material
between two pieces of n-material (called an npn transistor), or a piece of n-material
between two pieces of p-material (called a pnp transistor). The circuit symbols for
these transistors are shown in Fig. 4.1. We will focus here on the npn transistor;
the development for a pnp transistor is similar except the polarities and current
directions are reversed.
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Base

Collector

Emitter

Base

Collector

Emitter

Figure 4.1 Circuit symbols for the npn
(left) and pnp (right) transistors.

n p n

Conduction
Band

Forbidden
Band

Valance
Band Figure 4.2 An unbiased npn

transistor.

emitter base collector
fe
Ie

fc
Ic

fb Ib

Figure 4.3 An npn transistor biased for
linear active operation.

The band structure for our npn sandwich is shown in Fig. 4.2. The same shift
in energy levels charateristic of the p-n diode is seen here. Although the transistor
looks symmetric, it is not: as we will see below, the two n-materials are doped
differently.

We now apply external voltages between the junctions. Although there are
various ways to do this, a useful and common situation is shown in Fig. 4.3. As
indicated, the leftmost p-n junction is forward biased and the rightmost junction
is strongly reverse biased. The three parts of the transistor are labeled as shown:
emitter, base, and collector.

The operation of the transistor when biased this way can be described as
follows.
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1. Because the emitter-base junction is forward biased, electrons will have a net
flow from the emitter to the base. To facilitate this, the emitter is heavily doped
so that it has many electrons in the conduction band.

2. Since the collector-base junction is reverse biased, there is very little flow of
electrons into the base from the collector.

3. Electrons from the emitter suffer one of two fates.
(a) They recombine with a hole in the p-type base. In this case, an electron must

flow out of the base electrode to maintain charge neutrality. If this flow out
of the base is interrupted, the base will quickly charge up negatively and
stop the flow of electrons from the emitter.

(b) They pass through the base and into the collector, leading to electron flow
out of the collector electrode. To encourage this, the base is lightly doped
(to reduce the concentration of holes available for recombination) and is
made very thin. The collector region is also lightly doped, in contrast with
the emitter. This increases the width of the depletion region between the
base and collector which effectively makes the p-material even thinner.

4. Switching from the electron flow picture to considering currents, we see that

Ie = Ic + Ib (4.1)

and that typically
Ib 	 Ie, Ic. (4.2)

The point of the device is that the base current controls the flow of electrons
from emitter to collector, and that the control of this relatively large current requires
only the much smaller base current. Referring to the circuit symbols in Fig. 4.1,
we see that the arrow on the emitter points in the direction of the emitter current;
for the npn transistor, the emitter current is out of the transistor. The base and
collector currents have the opposite orientation to the emitter current; thus, for the
npn transistor, these currents go into the transistor. The opposite current directions
apply to the pnp transistor.

Two dimensionless parameters that characterize the relationships between these
currents are α and β. The parameter α is the fraction of the emitter current that
makes it to the collector, thus

Ic = αIe (4.3)

and, combining this with Eq. (4.1),

Ib = (1 − α)Ie. (4.4)
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Figure 4.4 Typical I–V characteristic for a
bipolar transistor showing the collector current
Ic versus collector-emitter voltage Vce with
base current Ib as a parameter. The dotted line
shows the power limit curve.

Note that α < 1 necessarily, but typically α is close to one. The second way of
parametrizing the transistor is with β, where

β ≡ Ic

Ib
= α

1 − α
. (4.5)

Typically, β 
 1.
There are various I–V curves one can make for the transistor, but one of the most

useful is a plot of the collector current Ic versus the voltage between the collector
and the emitter Vce. A different curve is obtained for each value of the base current
Ib, so in practice a family of I–V curves is plotted as shown in Fig. 4.4. In the
broad central portion of the plot, the collector current is roughly proportional to the
base current. This is called the linear active region and corresponds to the biasing
scheme shown in Fig. 4.3 and described by Eqs. (4.3), (4.4), and (4.5). On the left
side of the plot all the different base current lines converge to roughly the same
collector current, so proportionality no longer holds. This is the saturation region
and occurs when the collector-base junction is no longer strongly reverse biased
and some electrons can flow into the base from the collector, thus reducing Ic. As
the base current approaches zero (because the emitter-base junction is no longer
forward biased), the collector current also falls to zero. This cutoff region is at the
bottom of the plot. Like most components, the transistor has a maximum power
rating P which is equal to the maximum product of Vce and Ic. A typical plot of
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V1
Rb

Ib

Rc

Vcc

Ic

Figure 4.5 Transistor switching circuit.

Imax
c = P/Vce versus Vce is shown by the dotted line in Fig. 4.4. The transistor

must be operated to the left of this line in order to avoid burnout.

4.3 DC and switching applications

One application of the transistor is to provide DC or switching (on-off) control of
a current. A simple but illustrative example of this is shown in Fig. 4.5. Here Vcc
is the name given to a constant power supply voltage and V1 is a control voltage,
which, as we shall see, controls the flow of current through resistor Rc. Both
voltages are understood to be relative to ground.

There are two circuit loops we must analyze to understand this circuit. The first
starts with voltage V1 and continues through the resistor Rb and across the base-
emitter junction giving V1 − IbRb − Vbe = 0, where Vbe is the voltage from the
base to the emitter. Solving for Ib gives

Ib = V1 − Vbe

Rb
. (4.6)

The problem here is that Ib is a complicated function of Vbe, so again we have
a transcendental equation. We will approximate the behavior of the base-emitter
junction as equivalent to that of a diode junction. Now we are on familiar ground,
and a graphical solution of Eq. (4.6) is shown in Fig. 4.6. As V1 is increased, the
base current increases. As with the diode, we will often find it useful to approximate
Vbe ≈ 0.6 V when the junction is forward biased.

We now turn to the second circuit loop in Fig. 4.5. Starting with the power supply
voltage, we obtain Vcc − IcRc −Vce = 0, where Vce is the voltage from the collector
to the emitter of the transistor. Solving here for Ic gives

Ic = Vcc − Vce

Rc
. (4.7)

www.electronic07.com
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Ib

Vbe
V1

V1
Rb

Figure 4.6 Graphical solution for the control loop of the
transistor switching circuit.

Ic

Vce

Ib

Vcc

Vcc
Rc

Figure 4.7 Graphical solution for the
supply loop of the transistor switching
circuit.

Again, we face a transcendental equation because Ic is a complicated function of
Vce. The graphical solution for this case is shown in Fig. 4.7. Analyzing Eq. (4.7)
gives the y-intercept of the straight load line as Vcc/Rc and the x-intercept as Vcc.
The solution of Eq. (4.7) is given by the intersection of the load line with the
transistor characteristic curve. But which characteristic curve should we use? This
depends on the value of the base current, and thus on the solution to the control
circuit part of the problem.

Let’s consider what will happen if we let V1 switch between zero and some large,
positive value. When V1 is zero, our graphical analysis of Fig. 4.6 gives Ib = 0.
Then Fig. 4.7 gives a solution Ic = 0 and Vce = Vcc. When V1 is positive, on the
other hand, some base current will flow. If we choose V1 and Rb so as to give Ib
large enough, then the solution will lie on the left edge of Fig. 4.7, i.e., the transistor
will be saturated. The current Ic is now large and Vce is small. Our circuit thus gives
us on-off control of the current through Rc by switching the control voltage V1.
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In addition, if we take the collector voltage as an output, we have a voltage inverter:
a low input gives a high output, and vice versa. This is often useful in digital circuits.

4.4 Amplifiers

As noted above, an important application of transistors is the amplification of AC
signals. If we apply a sinusoidal signal to the circuit of Fig. 4.5 and take the output
from the collector to ground, will we get an amplified signal? We can answer this
question, at least qualitatively, by following the same procedure as used above.
We already know that when V1 = 0, the collector-to-ground voltage Vce will be
Vcc. As V1 starts to become positive, the base current will increase and Vce will
decrease. As long as we limit Ib so as to stay in the linear active region, Vce will
track V1 and we will get a sinusoidal signal (albeit an inverted one – see Fig. 4.8).
But when V1 passes through zero and becomes negative, we have problems. The
base current cannot be negative (remember that the base-emitter junction is like
a diode) so it remains at zero when V1 is negative, and that means that Vce will
remain at Vcc. We thus get the clipped waveform shown in Fig. 4.8. This is hardly
a faithful amplification of the input signal.

The problem stems from the inability of the circuit to handle negative input
signals. One way to fix this is to add a constant offset to our input signal, as shown
in Fig. 4.9. We adjust the offset so that, at the beginning of the sine wave, Vce is
in the middle of the linear active region. Now as the input voltage swings through
its cycle, the base current will move higher and then lower than its initial value
but will never become negative (at least if we keep the input sine wave amplitude
small enough). Thus Vce will move lower and then higher than its initial value but

V1

t

Vce

t

Vcc

Figure 4.8 Clipped output results when we
apply a sine wave to the switching circuit.
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V1

t

Vce

t
Figure 4.9 Adding a constant to the input signal
removes the clipping.

will not clip as before, so our output is an inverted, offset sine wave. Although it
is not evident from our discussion, the output is indeed amplified, as we shall see.

We now have a solution, but not a very practical one. Most communication
signals, for example, do not come with an offset level but simply vary around zero.
Rather than insist that our input signals have this offset, it makes more sense to
change our circuit to handle signals that vary around zero, and this is our next
task. We also need to decide what quantities are necessary to specify an amplifier’s
features and develop techniques for calculating these quantities.

4.4.1 The universal DC bias circuit

Our first task is to devise a circuit that will keep the transistor operating in the
middle of the linear active region. This circuit is called the universal DC bias
circuit because it will be used in all the amplifier circuits we consider and because
it sets the constant or DC operating conditions. Later, we will add an AC signal to
this circuit to produce an amplifier.

Our circuit is shown in Fig. 4.10. Power is supplied by the voltage source Vcc,
while R1 and R2 form a voltage divider. The collector and emitter resistors, Rc and
Re, complete the circuit.

Another reason we call this circuit universal is that other bias circuits can be
derived from this one by setting a resistor value either to zero (if it is replaced
by a wire in the alternative circuit) or to infinity (if it is missing in the alternative
circuit). The expressions we derive below can still be used with the appropriate
adjustment of resistor values.

To simplify analysis, it is convenient to replace the left half of the circuit by
its Thevenin equivalent, as indicated in Fig. 4.11. Our original circuit can then be
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Rc

Vcc

R1

R2 Re

Figure 4.10 The universal DC bias circuit.

R1

R2

Vcc
Veq =

(
R2

R1+R2

)
Vcc

Req = R1R2
R1+R2

Figure 4.11 Thevenin equivalent for the left half of the universal DC bias circuit.

Req

Ib

ReIe
Vcc

Rc
Ic

Veq
Figure 4.12 Redrawn version of the universal
DC bias circuit.

redrawn as shown in Fig. 4.12. We would like to obtain equations for Ic, Ib, and
Vce; these three quantities define the operating point of the transistor (also called
the quiescent point or Q point).

Applying KVL to the left side of Fig. 4.12 gives

Veq − IbReq − Vbe − IeRe = 0 (4.8)

while the right side gives

Vcc − IcRc − Vce − IeRe = 0. (4.9)
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We also note that Ie = Ic + Ib (which is always true) and

Ic = βIb (4.10)

(which is true for the linear active region where we wish to operate). Combining
these gives Ie = (β + 1)Ib, and using this result in Eq. (4.8) yields

Ib = Veq − Vbe

Req + (β + 1)Re
. (4.11)

Similarly, Eq. (4.9) produces

Vce = Vcc − Ic

(
Rc + β + 1

β
Re

)
. (4.12)

Thus if we know the four resistor values of our circuit, β, the power supply voltage
Vcc, and approximate Vbe, we can determine the operating point from Eqs. (4.11),
(4.12), and (4.10). We can also cast the equations in a form more convenient to use
if we know the operating point we want and seek the appropriate resistor values:

Ib

[
R1R2

R1 + R2
+ (β + 1)Re

]
=
(

R2

R1 + R2

)
Vcc − Vbe (4.13)

and
Rc +

(
β + 1

β

)
Re = Vcc − Vce

Ic
. (4.14)

Since we have two equations and four unknown resistances, there is no unique
solution to our DC bias problem. As we will see later, other amplifier parameters
will further restrain our choice of resistor values. For now, we note that a useful
procedure is to start by choosing R1 = R2 = 10 k� and then using Eq. (4.13) to
solve for Re and then Eq. (4.14) to solve for Rc.

4.4.2 Black box model of an amplifier

Before we get into the details of amplifier circuits and analysis, we should think
about the things we would like to know about our amplifier. As we shall see, the
simple amplifier model in Fig. 4.13 will allow us to use the amplifier effectively if
we know the following quantities.

1. The open-loop voltage gain, aOL. Generally, the voltage gain, a, is just Vout/Vin,
but this will depend on the value of the load resistance and other things. We can
obtain a parameter that just depends on the amplifier if we define
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Iin

ZinVin

Zout
Iout

RLaOLVin

Figure 4.13 Black box model
of an amplifier.

aOL = Vout(RL = ∞)

Vin
(4.15)

where Vout(RL = ∞) is the output voltage for the case where the load resistance
is infinite. An infinite load resistance is the same as having nothing connected
to the output terminals; hence, the term “open loop.”

2. The current gain g = Iout/Iin. This parameter is less useful since Iout necessarily
depends on the value of RL.

3. The input impedance Zin = Vin/Iin.
4. The output impedance Zout:

Zout = Vout(RL = ∞)

Iout(RL = 0)
(4.16)

where Iout(RL = 0) is the output current for the case where the load resistance
is zero.

The reader can verify that these definitions are consistent with the model of
Fig. 4.13. For example, if there is nothing connected to the output of the amplifier
(which is equivalent to RL = ∞), then no current will flow and there will be no
voltage drop across Zout. Thus the output voltage will be the same as the voltage
source in the model, aOLVin. This is consistent with Eq. (4.15).

As an example of the usage of this black box model, consider the following
problem. Suppose an amplifier has an open-loop voltage gain of 50, an input
impedance of 100 �, and an output impedance of 10 �. The amplifier is driven
with a sine-wave generator with output impedance 50 � and an open loop amplitude
of 0.1 Vrms. Find the power gain in decibels when an 8 � load is attached to the
amplifier output. Here the power gain is defined as the ratio of the power into the
amplifier to the power into the load.

The first step in our solution is to draw the circuit corresponding to the situation
described in the problem. This is shown in Fig. 4.14. Using Thevenin’s theorem,
the signal generator is modeled as an AC voltage source in series with a resistance.
We are given the open loop amplitude of this generator, which means the voltage at
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ZinVin

Zout

Vout RLaOLVin

Rs

50 �

Vs 0.1 Vrms

Figure 4.14 Example of using
the black box model.

the generator output when nothing is attached; since no current flows in this case,
there is no drop across the output impedance Rs, so this output voltage must be the
same as the AC voltage source. We have also labeled the input and output voltages
of the amplifier, Vin and Vout, respectively. The remaining features of our drawing
follow from Fig. 4.13 and the problem description.

The power into the amplifier is just V 2
in/Zin, where Vin is the rms amplitude.

Since the input circuit forms a voltage divider, we have

Vin =
(

Zin

Zin + Rs

)
Vs =

(
100 �

150 �

)
(0.1 Vrms) = 0.067 Vrms. (4.17)

Hence, the input power is Pin = V 2
in/Zin = 44.9 μW. Similarly, the output circuit

gives

Vout =
(

RL

Zout + RL

)
aOLVin =

(
8 �

18 �

)
(50 × 0.067 Vrms) = 1.49 Vrms (4.18)

giving an output power of Pout = V 2
out/RL = 0.28 W. The power gain is thus

Pout/Pin = 6171 or, in decibels, 10 log (Pout/Pin) = 37.9 dB.

4.4.3 AC equivalents for bipolar junction transistors

Having seen the usefulness of our black box model for an amplifier, our task is
now to formulate a way to calculate the black box parameters aOL, g, Zin, and Zout.
Before we get into the details, let’s review our approach. We know that, in order to
avoid clipping, we need to operate the transistor in the middle of the linear active
region, and we have devised the universal DC bias circuit to accomplish this. We
now wish to add an AC signal to this circuit which the transistor will then amplify
(we will see how this addition is done in the next sections). Our interest, then, is
to model the transistor’s response to this AC variation around the DC operating
point. In what follows, it is important to keep in mind that we are dealing only
with this AC response of the transistor; we have already solved the DC part of the



116 Bipolar junction transistors
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Figure 4.15 AC equivalent for the base-emitter junction.

problem when we determined the operating point. To emphasize this, we will use
lower-case letters for AC currents and voltages.

First we consider the base-emitter junction. We assume the base current is some
function of the base-emitter voltage, Ib(Vbe). Since we are interested in variations
around the DC operating point, we Taylor expand this function around the DC
base-emitter voltage V DC

be :

Ib(Vbe) = Ib
(
V DC

be
)+ (Vbe − V DC

be
) dIb

dVbe

(
V DC

be
)+ · · ·. (4.19)

The difference between the total current (or voltage) and the DC part of the current
(or voltage) is the AC part of the current (or voltage). If this AC part is small,1 we
can truncate the series after the linear term, and Eq. (4.19) becomes

ibe = vbe
dIb

dVbe

(
V DC

be
)

(4.20)

where we have introduced the lower-case notation for the AC part of the signals.
Finally, we define

rbe ≡
[

dIb

dVbe

(
V DC

be
)]−1

(4.21)

so that Eq. (4.20) can be written

vbe = iberbe. (4.22)

We have cast Eq. (4.22) in this form so that the interpretation will be clear: the AC
or small signal response of the transistor can be modeled by a resistor with value
given by Eq. (4.21) connected between the base and the emitter. This is represented
in Fig. 4.15.

Note that, if we treat the base-emitter junction as a diode, we can evaluate
Eq. (4.21) explicitly. In this case

Ib = I0

(
eeVbe/kT − 1

)
(4.23)

1 Because of this assumption, the model we are developing is sometimes called the small signal model
or the small signal equivalent for the transistor
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so
dIb

dVbe
= e

kT
I0eeVbe/kT ≈ e

kT
Ib (4.24)

where, in this last relation, we have used the fact that, for any appreciable voltage,
the exponential in Eq. (4.23) dominates. Since we are interested in evaluating the
derivative at the DC operating point (Vbe ≈ 0.6 V), this approximation is valid.
Thus

rbe = kT
eIb

. (4.25)

Using room temperature for T gives

rbe(�) = 0.025
Ib(A)

. (4.26)

We next attempt to model the collector-emitter portion of the transistor. In this
case, the collector current is a function of both the base current and the collector-
emitter voltage, Ic(Ib, Vce), so a double Taylor expansion is needed around the DC
operating point:

Ic(Ib, Vce) = Ic
(
IDC
b , V DC

ce
)+ (Ib − IDC

b
) dIc

dIb

(
IDC
b , V DC

ce
)

+ (Vce − V DC
ce
) dIc

dVce

(
IDC
b , V DC

ce
)+ · · ·. (4.27)

Introducing AC quantities as before and noting that Ic = βIb for the linear active
region, we obtain

ic = βib + 1
rout

vce (4.28)

where

rout ≡
[

dIc

dVce

(
IDC
b , V DC

ce
)]−1

(4.29)

and the β in Eq. (4.28) is obtained at the operating point. The circuit equivalent
for Eq. (4.28) is shown in Fig. 4.16. A current source with value βib is in parallel
with a resistor rout. A voltage vce applied across the terminals will give a current
vce/rout through the resistor, which, when combined with the current source, gives
the collector current expressed by Eq. (4.28).

Putting both parts of the AC equivalent model together yields Fig. 4.17. The left
side of the figure shows the results of Figs. 4.15 and 4.16 connected together at the
emitter. This can be redrawn in the compact form shown on the right.
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Table 4.1 Comparison of AC transistor models

Transistor parameter Our model h-parameter

Input resistance rbe hie
Output resistance rout 1

hoe
Current gain β hfe
Voltage feedback ratio none hre

E

rout

C

βib vce

ic

Figure 4.16 AC equivalent for the collector-emitter.
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rbe

B

vbe

ib

E

rout

C

βib vce

ic

= B

rbe

E

rout

βib

C
ib

Figure 4.17 The completed AC equivalent for the transistor.

E

hrevce
hie

B

vbe

ib

E

1
hoe

C

hfeib
vce

ic

Figure 4.18 The h-parameter model for the transistor.

Before moving on, we note that more complicated models of transistor behavior
exist. One of these, the h-parameter model, is shown in Fig. 4.18. In addition to
some name changes (summarized in Table 4.1), this model adds a voltage source
hrevce to the base-emitter junction. This addition recognizes that the base-emitter
junction is not an independent diode, but is part of a transistor, and the properties of
the base-emitter junction will depend on the voltage applied to the collector-emitter
junction. Note that there is potential for confusion in the transistor parameter names.
The terms input resistance, output resistance, and current gain here refer to the
transistor. We also apply these same terms to amplifiers. Fortunately, the symbols
used in this latter case are different (rbe, rout, and β versus Zin, Zout, and g).
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C1

R2vin
Re

C2

RLvout

Rc

Vcc

R1

Figure 4.19 The common-emitter
amplifier.

4.4.4 Applying the AC equivalents: the common-emitter amplifier

We now apply the AC equivalents to the calculation2 of our four amplifier param-
eters a, g, Zin, and Zout. We will do this for three different amplifier circuit
configurations. The first of these is the common-emitter amplifier, shown in
Fig. 4.19.

Since this is the first of our amplifier configurations, some comments are in order.
Note that the central part of this circuit is the universal DC bias circuit which, as
we have seen, sets the DC operating point for the circuit. We now add an AC
signal vin to the mix, coupled to the transistor base through the capacitor C1. For
this configuration, we take our output voltage off the collector of the transistor,
coupling this through capacitor C2. A resistor RL representing the load is included
on the output. The coupling capacitors C1 and C2 insure that the DC operating
point will not be affected by the circuitry connected to vin and vout.

The AC analysis of the amplifier can be broken down into steps as follows. It is
usually helpful to redraw the circuit as one proceeds.

1. Treat the coupling capacitors C1 and C2 as shorts and the DC power supply as
ground. Here we make the approximation that the coupling capacitance is large
enough that the capacitive impedance is negligible. Similarly, power supplies
usually have a large capacitance to ground, so the AC signal is effectively
connected to ground.

2. Insert the AC transistor model and simplify the circuit as much as possible. It
is important to keep track of various quantities of interest by including them in

2 We will calculate the voltage gain a including a load resistor RL to simplify the calculation of the
current gain. The black box parameter aOL can be obtained from a by setting RL = ∞.
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R1 R2vin
Re

Rc RL vout

Figure 4.20 The common-emitter amplifier after applying step 1.

R1 R2vin

iin

Re

B

rbe

E

rout

βib

C
ib

Rc RL vout

iout

Figure 4.21 The common-emitter amplifier after inserting the transistor model.

RBi2vin

iin

Re

rbe
βib

ib

R′
L vout

Figure 4.22 The common-emitter amplifier after simplifying.

the redrawn circuit. These include vin, vout, iin, iout, ib, and the location of the
transistor base, emitter, and collector.

3. Compute a, g, Zin, and Zout by writing vin, vout, iin, and iout in terms of ib.

Applying step 1 to the common-emitter amplifier, we obtain the redrawn circuit
shown in Fig. 4.20. The capacitors are replaced by direct connections and resistors
R1 and Rc, which were originally connected to Vcc, are connected to ground. Notice
that we have been careful to label vin and vout on the redrawn circuit.

Applying step 2, we obtain the redrawn circuit shown in Figs. 4.21 and 4.22. We
have inserted the transistor equivalent of Fig. 4.17, being careful to label everything
as we go. To obtain the simplified version shown in Fig. 4.22, we replace the parallel
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combination of R1 and R2 by RB and the parallel combination of Rc and RL by R′
L.

Finally, we note that typically rout is large and, to a first approximation, can be
ignored, so we remove it from the circuit.

We are now ready to apply step 3. The trick here is to write everything in terms
of ib, which will then cancel out in the end. For example, the output voltage, vout,
is equal to −βibR′

L since the current from the current source must go through R′
L.

The minus sign reflects the fact that, due to the direction of the current, we have a
voltage drop. To obtain the input voltage, vin, we add the voltage across rbe to the
voltage across Re, giving vin = ibrbe + (ib + βib)Re. Hence the voltage gain is

a = vout

vin
= −βibR′

L
ib[rbe + (β + 1)Re] = −βR′

L
rbe + (β + 1)Re

. (4.30)

Note that in this last result ib has canceled out and we are left with a result
that depends only on circuit parameters that we know: rbe, β, and the resistor
values.

Turning next to the current gain, we need expressions for iout and iin. Note here
that iout is the current through the load resistor RL, not R′

L (cf. Fig. 4.21). Since
we already have an expression for vout, it is easiest to note that iout = vout/RL. For
iin, note from Fig. 4.22 that iin = i2 + ib and i2 = vin/RB. Again, we can use the
previously obtained expression for vin to complete this:

g = iout

iin
=

vout
RL

ib
[

rbe+(β+1)Re
RB

+ 1
] = −βib Rc

Rc+RL

ib RB+rbe+(β+1)Re
RB

= −β

(
RB

RB + rbe + (β + 1)Re

)(
Rc

Rc + RL

)
. (4.31)

Finally, we compute the input and output impedances, using Zin = vin/iin and
Eq. (4.16). Again, we can use the expressions for vin, vout, iin, and iout we have
already obtained:

Zin = vin

iin
= ib[rbe + (β + 1)Re]

ib
[

RB+rbe+(β+1)Re
RB

] = RB[rbe + (β + 1)Re]
RB + rbe + (β + 1)Re

(4.32)

and
Zout = vout(RL = ∞)

iout(RL = 0)
= −βibRc

−βib
= Rc. (4.33)

We will examine the meaning of these results when we compare our three amplifiers
at the end. For now we simply note again that our results depend only on the
known circuit parameters, so we can, in principle, adjust the values to match our
requirements.
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C1

R2vin Re

C2

RLvout

Vcc

R1

Figure 4.23 The common-collector amplifier.

R1 R2vin
Re RL vout

Figure 4.24 The common-collector amplifier
after applying step 1.

RBvin R′
L

rbe

βibib

vout

Figure 4.25 The common-collector amplifier after inserting
the transistor model and simplifying.

4.4.5 The common-collector amplifier

Our next amplifier configuration, called the common-collector amplifier,3 is shown
in Fig. 4.23. In this case the output is taken from the emitter of the transistor, and
the collector resistor is omitted. Our DC operating point formulas are still valid,
but we must set Rc = 0.

Following the steps in our analysis recipe, we obtain the versions of this circuit
shown in Figs. 4.24 and 4.25. As before, we have combined R1 and R2 into RB, Re
and RL into R′

L, and ignored rout.

3 This configuration is also called the emitter-follower.



4.4 Amplifiers 123

The voltage gain a is then given by

a = vout

vin
= ib(β + 1)R′

L
ibrbe + ib(β + 1)R′

L
= (β + 1)R′

L
rbe + (β + 1)R′

L
. (4.34)

The current gain g and the impedances Zin and Zout are left as exercises, but the
results are

g = (β + 1)

(
RB

RB + rbe + (β + 1)R′
L

)(
Re

Re + RL

)
, (4.35)

Zin = RB[rbe + (β + 1)R′
L]

RB + rbe + (β + 1)R′
L

, (4.36)

and
Zout = Re. (4.37)

4.4.6 The common-base amplifier

Our final amplifier configuration, the common-base amplifier, is shown in Fig. 4.26.
Here the input voltage is applied to the emitter, the output is taken from the collector,
and an additional capacitor connects the base to ground. Note again that the central
portion of this circuit is the same DC bias circuit common to all three amplifiers.

Our analysis steps give the versions of the circuit shown in Figs. 4.27 and 4.28.
Because the capacitor CB shorts the transistor base to ground, resistors R1 and
R2 drop out of the final drawing. We also combine Rc and RL to form R′

L, and
in Fig. 4.28 we redraw the circuit one last time to make the calculations more
transparent.

R2CB
vinRe

C1

C2

RL

Rc

Vcc

R1

vout

Figure 4.26 The common-base
amplifier.
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R1 R2
Re

Rc RL vout

vin
Figure 4.27 The common-base
amplifier after applying step 1.

Re

B

rbe

E
βib

C
ib

R′
Lvin vout Re

E

rbe

B

ibvin

iin βib
C

R′
L vout

Figure 4.28 The common-base amplifier after inserting the transistor model and simplifying. The two
versions shown are equivalent but the one on the right makes the calculations easier.

The details of the calculations are left as exercises. The results are

a = β
R′

L
rbe

, (4.38)

g = β

(
Re

rbe + (β + 1)Re

)(
Rc

Rc + RL

)
, (4.39)

Zin = rbeRe

rbe + (β + 1)Re
, (4.40)

and
Zout = Rc. (4.41)

The results for our three transistor amplifier circuits are summarized in Table 4.2.
Some of our results are fairly complicated and difficult to interpret, so we have
also shown the limit of these formulas for the case where rbe is small enough to
ignore and RB is large enough to dominate when compared with the other terms.4

Keeping in mind that β is typically a large number, we can see that, in this lim-
iting case, the common-emitter amplifier can produce moderate-to-high voltage
and current gain and high input impedance. The common-collector amplifier, on
the other hand, has a voltage gain near unity, so it is clearly not the choice if you
want voltage gain. It does have the ability to produce moderate-to-high current gain,

4 This situation is not uncommon, but may not be the case for a given circuit, so use these latter
expressions with care.
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moderate-to-high input impedance, and low output impedance. These latter two
features are the strengths of this configuration for they allow this circuit to act as a
buffer between a high impedance source and a low impedance load. If such a source
was connected directly to the load, the voltage across the load would be severely
reduced by the voltage-divider effect and the power transfered to the load would be
small. One can alleviate these effects by using this amplifier between the source and
the load.

The common-base amplifier can produce very high voltage gain since β is large
and rbe can be small. The current gain, in contrast, will always be less than one and
the input impedance will be very low. Since these latter properties are usually not
desirable, this amplifier is only used when one is willing to pay the price for the
high voltage gain.

4.4.7 Other properties of transistor amplifiers

While we have thus far treated amplifier gain as a constant, it is really a function of
input signal frequency. One source of this frequency dependence is the capacitors
in the amplifier circuits. Recall that we have assumed in our derivations that these
are large enough that we can ignore the capacitive impedance Zc = 1/(jωC). If
we make ω small enough, however, this impedance will become large and the
amplifier gain will decrease as a result.

There is also a decrease in amplifier gain at high frequency. This effect is not
due to the coupling capacitors since, for high frequencies, our zero-impedance
approximation is very good. Instead, this decrease is due to so-called stray capac-
itances in the circuit. Generally speaking, there is capacitance between any two
conductors. This means that the wires that connect the components and the leads of
the components have a small capacitance between them. Usually this capacitance
is small enough to ignore (just as we ignore the resistance of these wires), but as the
signal frequency increases the capacitive impedance due to these stray capacitances
becomes small enough to make a difference. There is also stray capacitance at the
semiconductor junctions; the charge separation that results in energy level shifts
makes the junction look like a capacitor with positive charge on one side of the
junction and negative charge on the other. The result of all this stray capacitance
is that high frequency amplifier signals have a low impedance to ground, and this
reduces the amplifier gain at high frequencies.

These effects are usually summarized by giving the frequency response of the
amplifier. Typical parameters involved in this specification are included in Fig. 4.29.
The voltage gain is plotted versus frequency on a log-log plot. The constant gain
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a (dB)

log f (Hz)

Midband gain
3 dB

Bandwidth

Low frequency cutoff High frequency cutoff

Figure 4.29 An example frequency response curve for an amplifier.

level for the middle frequencies is termed the midband gain. The decrease in the
gain at low and high frequencies is called the roll off of the gain. Since the gain
decreases in a continuous manner, we choose a level 3 dB below the midband
gain to define the low frequency and high frequency cutoffs and the bandwidth. In
amplifier specifications, these quantities are often given in a table rather than as a
graph as we have done.

Finally, we note that these same capacitive effects give rise to frequency-
dependent phase shifts between the input and output signals. This behavior is
familiar from our early work on RC circuits where the output had a phase that
was dependent on ω. The same thing happens in any circuit with a capacitance (or
inductance) since the impedance of these components is imaginary.

4.4.8 Distortion

Ideally, our amplified signal will simply be a larger version of our input signal,
but in practice there is always some distortion of the signal. We saw a rather
severe example of this in Fig. 4.8, where the sine-wave output was clipped off
when the input signal became negative. We addressed this problem by placing our
DC operating point in the center of the linear active region where the relationship
between the base and collector currents is roughly linear. It is not perfectly linear,
however, and the non-linearity becomes progressively worse as the amplitude of the
signal into the base increases. Eventually, the output will show signs of clipping at
one or both extremes as the transistor is driven into the saturation or cutoff regimes.
This type of distortion is called harmonic distortion because a Fourier analysis of
the distorted output signal will include frequencies that are integer multiples of the
pure sine-wave input.
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iin

rinv1

rout

iout
RLav1vin

β

vout

Figure 4.30 A black box
amplifier with voltage
feedback.

4.4.9 Feedback

We can obtain an interesting and useful modification of our amplifier properties
by adding feedback to the circuit. This is done by taking a fraction β of the output
voltage vout and adding it to the input voltage.5 This is shown schematically in
Fig. 4.30 where we have modified the usual black box model of an amplifier to
include the feedback. We imagine that the circuitry in the box marked β does the
feedback job for us, and we assume this box has a large enough impedance on the
right side that it does not affect the output voltage or current. We can then still write

vout = av1 − ioutrout (4.42)

for the output loop. On the input side, we have

vin = v1 − βvout. (4.43)

Eliminating v1 from these equations gives

vout = avin + aβvout − ioutrout (4.44)

and solving for vout yields

vout =
(

a
1 − aβ

)
vin −

(
rout

1 − aβ

)
iout. (4.45)

We now notice that Eq. (4.45) has the same form as Eq. (4.42). This means that the
new circuit, which includes the feedback loop, can be viewed as a new amplifier
with a modified voltage gain a′ and output resistance r′

out given by

a′ =
(

a
1 − aβ

)
(4.46)

and
r′

out =
(

rout

1 − aβ

)
. (4.47)

5 Note that this β is not the same as the transistor current gain.
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Similar arguments can be made to show that the input resistance of our new
amplifier is also modified. Applying KVL to the output gives

vout = ioutRL = av1 − ioutrout (4.48)

which can be solved for iout:

iout = av1

RL + rout
. (4.49)

The input loop gives

v1 = vin + βvout = vin + βioutRL = vin + βRL

(
av1

RL + rout

)
v1. (4.50)

Rearranging, we obtain

v1

(
1 − aβ

1 + rout
RL

)
= vin. (4.51)

Finally, we employ v1 = iinrin in Eq. (4.51) and note that the new input resistance
r′

in is just vin/iin. Hence

vin

iin
≡ r′

in =
(

1 − aβ

1 + rout
RL

)
rin. (4.52)

Equations (4.46), (4.47), and (4.52) show how the amplifier voltage gain, output
resistance, and input resistance are modified by the addition of feedback. The
derivation has been general, so we can now consider special cases. Note first that
if aβ = 1, the modified gain a′ → ∞, so even the smallest input voltage will
be amplified until the circuitry reaches its limits.6 This is the basis of oscillator
circuits, which we will examine in detail later.

A particularly interesting limit of these general expressions is the case where aβ

is large and negative. In this case

a′ =
(

a
1 − aβ

)
≈
(

a
−aβ

)
= − 1

β
(4.53)

so the modified voltage gain a′ in this limit depends only on the feedback β and
not on the original amplifier gain a. Similarly,

r′
out =

(
rout

1 − aβ

)
≈
(

rout

−aβ

)
→ 0 (4.54)

6 This case is well known to most garage bands.
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and

r′
in =

(
1 − aβ

1 + rout
RL

)
rin ≈

(
− aβ

1 + rout
RL

)
rin → ∞ (4.55)

where the final limits pertain to the case −aβ → ∞.
These characteristics are quite attractive. The input resistance is high, so we

need not worry about having our source voltage loaded down by the voltage divider
effect. A similar advantage is obtained on the output because the output resistance
is low. Finally, the voltage gain is set by a single parameter, the feedback β, in
contrast to the relatively complicated expressions for voltage gain in Table 4.2.
Appreciation of the characteristics of amplifiers with this type of feedback led to
the development of the operational amplifier which we will study in Chapter 6.
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EXERCISES

1. Using the transistor characteristics of Fig. 4.31, find β for several values of Ib
when Vce = 6 V. Repeat for several values of Vce when Ib = 30 μA. This shows
that β is not really a constant over the linear active region.

2. Determine the operating point of a universal transistor DC bias circuit when
Vcc = 15 V, R1 = 10 k�, R2 = 2.2 k�, Rc = 680 �, and Re = 100 �. Assume
β = 200 and Vbe = 0.72 V.

3. Design a circuit that will set a reasonable operating point for a transistor with
the characteristics of Fig. 4.31. Assume that the power rating for the transistor
is 25 mW.

4. For the operating point of the previous problem, determine the AC model
parameters rbe, β, and rout.

5. Derive the expressions for the current gain g and the input impedance Zin for
the common-collector amplifier.

6. Derive the expressions for the voltage gain a, the current gain g and the
input impedance Zin, and the output impedance Zout for the common-base
amplifier.

7. If the circuit of Problem 2 is configured as a common-emitter amplifier,
calculate the resulting voltage and current gain. Assume a load resistor
of 1 k�.

8. Design a transistor amp with a ≈ 1 and g ≈ 100. Give the values of all compo-
nents you use. Assume the transistor has the characteristics of Fig. 4.31. You
may assume any load resistance you like.
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Vce (V)

I b
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A
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15
20
25
30

35
40

Figure 4.31 Transistor
I–V characteristics for
Problems 1, 3, 4, and 8.
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9. Suppose an amplifier has an open-loop voltage gain of 20, an input impedance
of 100 �, and an output impedance of 50 �. The amplifier is driven with a sine-
wave generator with output impedance of 50 � and an open loop amplitude of
0.1 Vpp. Find the resulting voltage across a 200 � load attached to the amplifier
output.
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5 Field-effect transistors

5.1 Introduction

In this chapter we introduce the second major type of transistor: the field-effect
transistor. Like the bipolar junction transistors (BJTs) we studied in Chapter 4,
field-effect transistors (FETs) allow the user to control a current with another
signal. The key difference is that the FET control signal is a voltage while the BJT
control signal is a current. Also, the FET control input (called the gate) has a much
higher input impedance than the base of a BJT. Indeed, the DC gate impedance
for FETs varies from a few megaohms to astounding values in excess of 1014 �.
High input impedance is a highly desirable feature that greatly simplifies circuit
analysis.

The BJT has three connections: the collector, base, and emitter. The correspond-
ing connections on an FET are called the drain, gate, and source. Some versions
of the FET have a fourth connection called the bulk connection. Bipolar transistors
come in just two types with opposite polarities: the npn and the pnp. Field-effect
transistors have greater variety. In addition to the polarity pairs (termed n-channel
and p-channel), there are differences in gate construction ( junction and metal
oxide), and doping (depletion and enhancement). In terms of analysis, however,
they are all very similar, so we will not have to consider each variety separately.
Also, as we did with the bipolar transistor, we will focus on one of the polarities
(n-channel) since the other polarity simply involves swapping the labels for n and
p and changing the sign of the voltages and the direction of the currents.

FETs have both advantages and disadvantages when compared with BJTs. As
noted above, FETs have extremely high gate impedance which makes them ideal as
a buffer or input stage for a complex circuit. They are also generally less sensitive to
temperature variations and more suitable for the large scale integration of modern
micro-circuits. On the other hand, FET amplifiers tend to have lower gain than
their BJT counterparts. The metal oxide gate construction of some FETs is highly
susceptible to damage from static electricity, which means that you can destroy
the transistor simply by touching it. Finally, the manufacturing spread in FET
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parameters is larger than for BJTs. This makes it trickier to design circuits for mass
production.

5.2 Field-effect transistor fundamentals

5.2.1 Junction field-effect transistors

We first consider the junction field-effect transistor or JFET. The n-channel version
of the JFET is shown with typical external bias voltages in Fig. 5.1. The gate of
the device is a piece of p-type semiconductor placed in a larger piece of n-type
semiconductor. The two ends of the n-type semiconductor are called the source
and the drain, and the region surrounding the p-n junction is called the channel.
Current enters the drain, flows through the channel and exits from the source. Since
the current is flowing through a single material, the I–V characteristic between the
drain current Id and the drain-source voltage Vds is that of a resistor (i.e., linear).
However, this simple behavior is modified when a gate voltage is applied or when
Vds gets too large.

As shown in the figure, the polarity of the gate-source voltage Vgs is such as to
reverse bias the p-n junction of this device. As noted in Chapter 3, a reverse biased
p-n junction passes very little current, and this is the reason for the high gate input
impedance of this device. Recall also that there is a depletion region in the vicinity
of the p-n junction where the density of the charge carriers is markedly reduced, and
the size of this depletion region increases with reverse bias. Thus, as Vgs becomes
more negative the depletion region extends further into the channel, effectively
reducing its cross-sectional area. Since the resistance of a material varies inversely

source

gate

drain
n p

channel

Vgs

Vds

Figure 5.1 An n-channel JFET with typical biasing voltages.
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with cross-sectional area (cf. Eq. (1.6) in Chapter 1), this reduces the drain current
and the slope of the I–V characteristic curve.

This, however, is not the whole story. The potential of the channel relative to
the source varies from zero to Vds as we move thorough the channel from the
source to the drain. Thus, the reverse bias of the p-n junction and the extent of the
depletion region also vary with position. This is indicated in Fig. 5.1 by the dotted
line representing the boundary of the depletion region.

If the reverse bias of the p-n junction at some location is sufficient, the depletion
region will extend across the entire channel and the boundary will touch the bottom
of the channel. This is called the pinchoff or saturation point. If Vds is further
increased after saturation, the drain current remains essentially constant, reflecting a
balance between the increased voltage and the reduced conductivity of the channel.

A set of representative I–V characteristics showing these features is given in
Fig. 5.2, which also serves to introduce some additional nomenclature. The different
curves represent different values of Vgs which are all taken to be above the threshold
value Vt, the value of Vgs that reduces the drain current to zero for all Vds. For small
Vds the curves are linear, but eventually curve over and reach their maximum value
Id(sat) at Vds(sat). The boundary of this linear region (also called the resistance,
ohmic, or non-saturation region) is indicated by the dotted line. For values of
Vds > Vds(sat), the drain current is essentially constant. This is called the saturation

Id

Vds

Vgs

Linear region Saturation region

Id = Id(sat)

Figure 5.2 I–V characteristics for
an FET.
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Drain

Gate
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Drain

Figure 5.3 Circuit symbols for the n-channel (left)
and p-channel (right) JFETs.

region (also known as the pinchoff or active region). Although not shown in Fig. 5.2,
for large enough Vds we enter a breakdown region where the drain current rises
steeply.

The characteristic curves can also be represented by a set of model equations.1

The saturation value of the drain-source voltage for a given gate-source voltage is
given by

Vds(sat) = Vgs − Vt. (5.1)

Here Vt is the threshold voltage previously defined. In the linear region where
Vds < Vds(sat), the drain current is given by

Id = K[2(Vgs − Vt) − Vds]Vds = K[2Vds(sat) − Vds]Vds (5.2)

where K is a constant. From this we can see that an approximately linear relationship
between Id and Vds requires Vds 	 2Vds(sat). Finally, in the saturation region where
Vds > Vds(sat), we have

Id = Id(sat) = K(Vgs − Vt)
2 = KV 2

ds(sat). (5.3)

The circuit symbols for both the n-channel and p-channel versions of the JFET are
shown in Fig. 5.3. The arrow represents the diode formed by the transistor junction.
One must keep in mind, however, that in the JFET this junction is normally reverse
biased.

5.2.2 Metal oxide field-effect transistors

The second type of FET we will consider is the metal oxide semiconductor
field-effect transistor or MOSFET.2 These transistors are further divided into
enhancement and depletion versions. The n-channel versions of the enhancement
and depletion MOSFETs are shown with typical external bias voltages in Figs. 5.4
and 5.5, respectively.3 As with the JFET, the name of this device refers to the

1 We refer the reader to the references for further discussion of the physical basis of these equations.
2 This device is sometimes called an IGFET for insulated gate field-effect transistor.
3 In some advanced applications, the bulk connection would have its own bias, but we will assume it is

connected to the source
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Figure 5.4 An n-channel enhancement-mode
MOSFET with typical biasing voltages.
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Figure 5.5 An n-channel depletion-mode
MOSFET with typical biasing voltages.

structure of the gate. For the MOSFET, the gate pin of the device connects to a
layer of metal or other high conductivity material. The metal is deposited on a
layer of silicon oxide or other insulating material, which in turn is deposited on the
semiconductor. Because of the insulating material, the gate is electrically isolated
from the semiconductor and has an extremely high DC input impedance.

To understand the operation of MOSFETs, consider Fig. 5.4. The source
and drain are connected to two pieces of n-semiconductor embedded in a p-
semiconductor substrate (bulk). Without a gate voltage, the source-bulk and
drain-bulk junctions form two back-to-back diodes and no current can flow from
drain to source. When a positive voltage is applied to the gate, minority electrons
in the p-semiconductor are attracted to the gate region and form an inversion layer.
The electrons in this inversion layer allow current to flow between the drain and
source. The larger the gate voltage, the more electrons in the inversion layer and
the larger the drain current. This type of MOSFET, where a conduction channel is
created by the action of the gate voltage, is called an enhancement-mode MOSFET.
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In contrast, the depletion-mode MOSFET shown in Fig. 5.5 already has a per-
manent channel between the source and drain, so drain current will flow even with
zero gate voltage. When a negative gate voltage is applied, electrons in this channel
are repelled, depleting the channel of charge carriers and reducing the drain current.
Adding to the versatility of this device is the fact that a positive gate voltage will
attract electrons to the channel and increase the drain current. This versatility comes
at the price of somewhat confusing terminology: the depletion-mode MOSFET can
be operated in depletion-mode (negative gate voltage) or enhancement-mode (pos-
itive gate voltage), while the enhancement-mode MOSFET can only be operated
in enhancement-mode.

The circuit symbols for MOSFETs are shown in Figs. 5.6 and 5.7. There is some
variety in the way MOSFETs are represented, and in each figure we have shown
two versions, one that is more representative (top row) and one that is simpler
(bottom row). For the enhancement-mode MOSFET symbols in Fig. 5.6, the top-
row versions have a gap between the drain and source that represents the lack
of a permanent channel. In line with this scheme, the depletion-mode MOSFET

Gate

Source

Drain

Bulk
Gate

Source

Drain

Bulk

Gate

Source

Drain

Gate

Source

Drain
Figure 5.6 Circuit symbols for the n-channel (left)
and p-channel (right) enhancement-mode MOSFETs.
The second row shows simplified versions of the
symbols.
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Source
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Gate

Source

Drain
Figure 5.7 Circuit symbols for the n-channel (left)
and p-channel (right) depletion-mode MOSFETs. The
second row shows simplified versions of the
symbols.
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symbols in Fig. 5.7 have a solid line between drain and source. Some MOSFETS
have a separate pin for the bulk connection (also called the body or substrate
connection) and this is shown in the top-row symbols. The bottom-row symbols
have the advantage of being similar to those for bipolar transistors and reflect the
fact that the bulk connection is often simply tied to the source connection.

The variety of field-effect transistors can be daunting, but the various types are
actually quite similar in terms of circuit analysis. The I–V characteristics in Fig. 5.2
could apply to any of the FETs we have discussed, the only difference being the
values of Vgs assigned to the curves. For the n-channel JFET, the threshold voltage
is always negative and there is not much to gain by making the gate voltage greater
than zero. For the n-channel enhancement-mode MOSFET, the threshold voltage
is zero and the higher curves would correspond to increasingly positive values of
Vgs. For the n-channel depletion-mode MOSFET, the threshold voltage is negative
and a zero value of Vgs would correspond to one of the mid-level curves. Higher
curves would be positive values of Vgs.

A graphical way to see this is to plot the transfer curve for the various devices.
The transfer curve is a plot of Id versus Vgs for a fixed value of Vds in the saturation
region. In Fig. 5.8 we have plotted representative transfer curves for the three types

Id

Vgs

JFET d-mosfet e-mosfet

Vt(JFET) Vt(dmos) Vt(emos) = 0

Figure 5.8 Transfer curves for (from left to right) a JFET, a depletion-mode MOSFET, and an
enhancement-mode MOSFET (all n-channel).
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of FET we have discussed. The functional dependence is given by Eq. (5.3). The
reader can verify that the curves reflect the qualitative description given above.

5.3 DC and switching applications

As we did with the BJT, we first consider the use of an FET to provide either DC or
on-off control of a current. The relevant circuit is shown using a JFET in Fig. 5.9,
but the analysis is the same for a MOSFET. Here Vdd is a constant power supply
voltage and Vg is the control voltage, which controls the flow of current through
resistor Rd. As before, both voltages are understood to be relative to ground.

The analysis of the control circuit is simplified by the fact that FETs are voltage
controlled devices. We only need find the voltage between the gate and source
Vgs, and, since the source is grounded, Vgs = Vg. The drain circuit analysis gives
Vdd − IdRd − Vds = 0, where Vds is the voltage from the drain to the source of the
FET. Solving for Id gives

Id = Vdd − Vds

Rd
. (5.4)

Again, we face a transcendental equation because Id is a complicated function of
Vds, but we can obtain a graphical solution as shown in Fig. 5.10. An analysis of
Eq. (5.4) gives the y-intercept of the straight load line as Vdd/Rd and the x-intercept
as Vdd. The solution of Eq. (5.4) is given by the intersection of the load line with
the transistor characteristic curve corresponding to our known value of Vgs.

In Fig. 5.10 we have labeled the curves with typical values of Vgs for a
JFET, an enhancement-mode MOSFET (e-mosfet) and a depletion-mode MOSFET
(d-mosfet) to emphasize the commonalities as well as the differences in the usage
of these devices. Suppose, for example, that you wish to switch the current through
Rd on and off. To do this with a JFET in the circuit the control voltage Vg must
switch from zero (for Id on) to around −6 V (for Id off ). Suppose now that you

Vg

Rd

Vdd

Id

Figure 5.9 JFET switching circuit.
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Figure 5.10 Graphical solution for the circuit of Fig. 5.9.

only have positive voltages available for Vg. The circuit can be adapted to this
situation by simply using an e-mosfet rather than the JFET. Now +5 V would turn
Id on and 0 V would turn it off. Finally, we note that, as always, the circuit design
is constrained by the power rating of the FET used and our operating point must
be to the left of the maximum power curve shown by the dotted line.

5.4 Amplifiers

We now turn to the use of FETs in amplifier circuits. Again, the development is
very similar to that used for BJT amplifier circuits in Chapter 4. The first task is
to set the DC operating point of the transistor in the central part of the saturation
region. We will use the universal DC bias circuit to accomplish this. Then we will
develop an AC equivalent circuit to describe variations around the operating point.
This equivalent circuit will then be used to analyze typical amplifier configurations
and obtain the four quantities (a, g, Zin, and Zout) required for the black box model
of the amplifiers.
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5.4.1 The universal DC bias circuit

Our DC bias circuit is shown in Fig. 5.11. In this example we have used an e-
mosfet, but the analysis applies for any FET. Other bias circuits can be obtained
from this one by adjusting the resistor values (R = 0 for a shorted resistor and
R = ∞ for a missing resistor).

The analysis of the left part of the circuit is simplified by the very high input
resistance of the FET. We can thus ignore the extremely small current into the gate
and obtain the gate bias Vg from the voltage divider equation

Vg =
(

R2

R1 + R2

)
Vdd. (5.5)

The transistor is controlled, however, by the gate-source voltage Vgs, not by Vg.
To obtain this, we start at the gate and complete the voltage loop to ground, giving
Vg − Vgs − IdRs = 0. Note here that, because of the lack of any gate current, the
current exiting the source is the same as that entering the drain, Id. Solving for Id
gives

Id = Vg − Vgs

Rs
. (5.6)

As usual, this equation is deceptively simple because Id is a function of Vgs and Vds.
Since we intend to set our operating point in the saturation region, the dependence
on Vds is negligible and the dependence on Vgs is given by either Eq. (5.3) or the
transfer curve. Using Eq. (5.3) we obtain

K(Vgs − Vt)
2 = Vg − Vgs

Rs
(5.7)

Rd

Vdd

R1

R2 Rs

Figure 5.11 DC bias circuit.
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Id

Vgs
Vg

Vg/Rs

Figure 5.12 Graphical solution to Eq. (5.6).

which can be written

V 2
gs +

(
1

KRs
− 2Vt

)
Vgs +

(
V 2

t − Vg

KRs

)
= 0. (5.8)

This quadratic equation can then be solved for Vgs. This value is then used in
Eq. (5.6) to obtain Id. Alternatively, a graphical solution can be obtained by
plotting the Eq. (5.6) load line and finding its intersection with the transfer curve,
as shown in Fig. 5.12.

Turning to the right side of our bias circuit and applying the voltage loop law,
we obtain Vdd − IdRd − Vds − IdRs = 0 or

Id = Vdd − Vds

Rs + Rd
(5.9)

where Vds is the voltage from the drain to the source of the transistor. Since we
know Id from our solution of Eq. (5.6), we can solve this for Vds and complete
our determination of the operating point. Alternatively, we can obtain a graphical
solution by the load line method. The resulting plot will be similar to Fig. 5.10
except the y-intercept of the load line will be changed to Vdd/(Rs + Rd).
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5.4.2 AC equivalents for FETs

We now develop an equivalent circuit model for variations in the transistor behavior
around the operating point. The operating point values we denote V DC

gs , V DC
ds , and

IDC
d . Using the lower-case notation, we specify the AC part of the gate-source

voltage as vgs ≡ Vgs − V DC
gs , and similarly for id and vds. Because of the high input

impedance of FETs we do not need to be concerned with any gate current.
Turning to the drain-source portion of the transistor, we note that, in general, the

drain current is a function of both Vgs and Vds. We thus employ a double Taylor
expansion to express the variation around the operating point:

Id(Vgs, Vds) = Id

(
V DC

gs , V DC
ds

)
+
(

Vgs − V DC
gs

) dId

dVgs

(
V DC

gs , V DC
ds

)

+ (Vds − V DC
ds
) dId

dVds

(
V DC

gs , V DC
ds

)
+ · · ·. (5.10)

Introducing AC quantities as before we obtain

id = gmvgs + 1
rout

vds (5.11)

where

rout ≡
[

dId

dVds

(
V DC

ds , V DC
ds
)]−1

(5.12)

is the output (or drain) resistance and

gm ≡ dId

dVgs

(
V DC

ds , V DC
ds
)

(5.13)

is the transconductance. The units of this latter quantity are variously named
amps per volt (abbreviated A/V), mhos (�), or siemens (S). Values of gm vary
from a few mA/V to values in the range of a few A/V. The transconductance
is sometimes referred to as the forward transfer conductance/admittance and the
symbol yfs is used. Similarly, the inverse of rout is sometimes called the small signal
admittance, yos.

Since our operating point is chosen to be in the saturation region, the drain
current in Eqs. (5.12) and (5.13) is the saturation value of that current, Id = Id(sat).
We can then use Eq. (5.3) to obtain gm = 2K(Vgs − Vt).

The observant reader will also note that the I–V characteristics given in Figs. 5.2
and 5.10 are flat in the saturation region and, thus, rout = ∞. In real FETs, there is a
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Figure 5.13 Completed AC equivalent for an FET.
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Figure 5.14 The common-source
amplifier.

slight positive slope to these lines due to an effect called channel length modulation.
The interested reader is referred to the references for a discussion of this effect. In
the interests of simplicity, we will ignore this effect and take rout = ∞.

The circuit equivalent of Eq. (5.11) is shown in Fig. 5.13. The drain current
id is the sum of a current source with value set by the gate-source voltage and
the transconductance and the current through the resistor rout which is given by
vds/rout.

5.4.3 FET common-source amplifier

We now apply our AC equivalent to the analysis of an FET amplifier, shown in
Fig. 5.14. Except for the substitution of an FET (here an e-mosfet) for the BJT, the
configuration is the same as for the common-emitter amplifier studied in Chapter 4.
The analysis of this common-source amplifier is also similar, but must take into
account the differences in the AC model. Specifically, we will write the quantities
vin, vout, iin, and iout in terms of vgs instead of ib.

Following the three step procedure of Chapter 4, we begin by treating the input
and output capacitors as shorts and the DC power supply as ground. Recall that
this approximation is valid when the capacitive impedances are negligible. The
resulting circuit is shown in Fig. 5.15.
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The next step is to insert the AC equivalent for the transistor. This is done in
Fig. 5.16. Finally, we simplify the resulting circuit by ignoring rout and by replacing
the parallel combination of R1 and R2 by RG and the parallel combination of Rd
and RL by R′

L. The result is shown in Fig. 5.17.
Now we are ready to calculate the black body amplifier quantities a, g, Zin,

and Zout by writing vin, vout, iin, and iout in terms of vgs. Since the current source
current gmvgs must go through the resistor R′

L, we have vout = −gmvgsR′
L. The

input voltage vin is the gate-source voltage vgs plus the voltage across Rs, giving
vin = vgs + gmvgsRs. Hence the voltage gain is

a = vout

vin
= −gmvgsR′

L
vgs + gmvgsRs

= −gmR′
L

1 + gmRs
. (5.14)

R1 R2vin
Rs

Rd RL vout

Figure 5.15 The common-source amplifier after applying step 1.
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Figure 5.16 The common-source amplifier after inserting the transistor model.
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Figure 5.17 The common-source amplifier after simplifying.
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Note that we have written both top and bottom of the quotient in terms of vgs so
that it would cancel out and leave us with an expression in terms of the circuit
parameters. As usual, the minus sign in the answer indicates that the signal is
inverted.

Next we compute the current gain and thus need expressions for iout and iin.
Recalling that iout is the current through the load resistor RL, we have simply
iout = vout/RL. Computing iin is particularly simple since the gate of the FET draws
no current: iin = vin/RG. Thus

g = iout

iin
= vout/RL

vin/RG
= −gm

1 + gmRs

(
RdRG

Rd + RL

)
(5.15)

where we have substituted the expressions for vout and vin obtained in calculating a.
The computation of the input and output impedances is straightforward since we

already have vin, vout, iin, and iout. Thus

Zin = vin

iin
= vin

vin/RG
= RG (5.16)

and

Zout = vout(RL = ∞)

iout(RL = 0)
= −gmvgsRd

−gmvgs
= Rd. (5.17)

As with the bipolar transistor amplifiers, our results depend only on the known
circuit parameters, so we can, in principle, adjust the values to match our require-
ments. Of particular interest is the result Zin = RG = R1‖R2. We can thus make the
input impedance of the amplifier as high as we like by making resistors R1 and R2
large. There is a limit, however, to this technique. While the FET gate impedance
is very large, the gate does draw a small DC current. If we make the gate bias
resistors R1 and R2 too large, this current will produce a large enough voltage drop
across the resistors to upset the DC bias. While we could account for this effect in
our circuit model, it is usually good enough to ignore the gate current but keep the
values of R1 and R2 well below the gate input impedance.

5.4.4 FET common-drain amplifier

Our second example of an FET amplifier is the common-drain amplifier (also
called the source-follower), shown in Fig. 5.18. In analogy with the BJT common-
collector amplifier, the output is taken from the source of the transistor and the drain
resistor is omitted. Application of the usual analysis steps leads to Fig. 5.19 where
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Figure 5.18 The common-drain
amplifier.
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Figure 5.19 The common-drain amplifier
after simplifying.

R′
L is the parallel combination of Rs and RL; details are left as an exercise. We can

now calculate the voltage gain a as before. Since the current source current gmvgs
must go through the resistor R′

L, we have vout = gmvgsR′
L. The input voltage vin is

the gate-source voltage vgs plus the voltage across R′
L, giving vin = vgs + gmvgsR′

L.
Hence the voltage gain is

a = vout

vin
= gmvgsR′

L
vgs + gmvgsR′

L
= gmR′

L
1 + gmR′

L
. (5.18)

Note that, as with the common-collector amplifier, this voltage gain is always less
than one.

Derivation of the remaining the black body amplifier quantities g, Zin, and Zout
is left as an exercise. The results are

g = gm

1 + gmR′
L

(
RsRG

Rs + RL

)
, (5.19)

Zin = RG, (5.20)

and

Zout = Rs. (5.21)
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5.4.5 FET common-gate amplifier

Our final example of an FET amplifier is the common-gate amplifier shown in
Fig. 5.20. This is the FET analog of the BJT common-base amplifier. For this
amplifier we leave the entire analysis as an exercise. The results are:

a = gmR′
L, (5.22)

g = gm

1 + gmRs

(
RsRd

Rd + RL

)
, (5.23)

Zin = Rs

1 + gmRs
, (5.24)

and

Zout = Rd. (5.25)

Here R′
L is the parallel combination of Rd and RL.

R2CG
vinRs
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C2

RL

Rd

Vdd

R1

vout

Figure 5.20 The common-gate
amplifier.
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EXERCISES

1. Consider the transistor characteristics of Fig. 5.21. (a) Are these the character-
istics of a JFET, d-mosfet, or e-mosfet? (b) Make a table of the given Vgs values
and the corresponding Id(sat) values. Also include a column in the table giving√

Id(sat). (c) Make a plot of
√

Id(sat) versus Vgs. Find the slope and y-intercept of
the plot and use these to determine values for K and Vt in the model equation
Eq. (5.3).
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Figure 5.21 Transistor I–V characteristics for Problem 1.

2. Determine the operating point (Vgs, Id, and Vds) of a universal transistor DC
bias circuit when Vdd = 15 V, R1 = 1 M�, R2 = 100 k�, Rd = 3000 �, and
Rs = 1000 �. Use the values of K and Vt determined in Problem 1.

3. For the operating point of Problem 2, determine the AC model parameters gm
and rout.

4. If the circuit of Problem 2 is configured as a common-source amplifier, calculate
the resulting voltage and current gain. Assume a load resistor of 10 k� and use
the AC model parameters determined in Problem 3.
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5. Derive the expressions for the current gain g, the input impedance Zin, and the
output impedance Zout for the common-drain amplifier.

6. Derive the expressions for the voltage gain a, the current gain g, the input
impedance Zin, and the output impedance Zout for the common-gate amplifier.
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Donald A. Neamen, Microelectronics: Circuit Analysis and Design, 3rd edition
(New York: McGraw-Hill, 2007).

John E. Uffenbeck, Introduction to Electronics, Devices and Circuits (Englewood Cliffs,
NJ: Prentice-Hall, 1982).



6 Operational amplifiers

6.1 Introduction

We now turn to an examination of the properties and uses of the operational
amplifier or op-amp. A detailed analysis of this multi-stage amplifier circuit is
beyond the scope of this text, so we will treat it as a black box device as we did
earlier with the voltage regulator. Thus, to use the device, we need only learn and
apply some simple rules and, later, the real-world limitations of the device.

In current usage, the operational amplifier is usually packaged as an integrated
circuit with multiple leads or pins. While there are hundreds of different op-amps
with different specifications, they all follow the same usage rules. To be specific,
we will focus on a “classic” version: the 741 op-amp.

The circuit symbol for the op-amp is shown in Fig. 6.1. There are inputs for two
power supply voltages (one positive and one negative relative to ground, labeled
V+

cc and V−
cc, respectively). There are also two signal inputs: the inverting input,

labeled with a minus sign, and the non-inverting input, labeled with a plus sign.
Happily, there is only one output.

As we know, voltages are always between two points, but our description of the
op-amp inputs seems to refer to voltages at one point, the various input pins. It
is thus important to note that all of the voltages for the op-amp are referenced to
ground (i.e., the second point is ground). While it is common for writers discussing
op-amp circuits to refer to the voltage at some point, one should keep in mind that
they are really talking about the voltage between this point and ground. Also, the
power supply connections shown in Fig. 6.1 are often omitted from circuit diagrams
for simplicity, and it is easy for the novice building such a circuit to forget these
connections. Of course, the circuit will not work without them.

The basic operation of the op-amp can be simply stated. The output voltage
is proportional to the difference between the inverting and non-inverting input
voltages:

Vout = AOL
(
V+

in − V−
in
)

(6.1)
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Figure 6.1 Schematic symbol for the operational amplifier.

where AOL is the open-loop voltage gain. Note that the plus and minus signs on the
two input voltages are simply labels denoting which input the voltage is applied
to; they do not specify the polarity of the input voltages.

Typically, AOL is very large (for the 741 it is 200 000). One might then imagine
huge output voltages, but Eq. (6.1) is subject to limitations. The output voltage
Vout can only be within a range set by two saturation voltages:

V−
sat ≤ Vout ≤ V+

sat (6.2)

where V+
sat ≈ V+

cc − 1 V (a little below the positive power supply voltage) and
V−

sat ≈ V−
cc + 1 V (a little above the negative power supply voltage). The output

current is also restricted: for the 741 op-amp it must be less than 25 mA. Finally, we
note that the input impedance of the two inputs is very high, so very little current
flows into these inputs.

The restrictions imposed by Eq. (6.2) along with the large value of AOL mean that
any small difference between the op-amp inputs will cause the output to saturate.
For example, if we use the 741 op-amp with ±15 V power supplies, it takes only
a 70 μV difference between the inputs for the output to reach its limit. This is the
basis for the non-linear applications of the op-amp.

6.2 Non-linear applications I

Non-linear applications of the op-amp use the device as a comparator. It compares
the voltage at the two inputs and gives a positive or negative output depending
on which input is larger. Such an application is shown in Fig. 6.2. The input is
an arbitrary signal that wanders around the level applied to the inverting input
(here, 1 V). When the input signal is above 1 V, the output swings to its positive
saturation limit.1 When the input falls below 1 V, the output falls to its negative
saturation limit. The state of the output thus tells us the relative size of the input

1 Strictly speaking, it must be 70 μV above 1 V, but this is so small as to be negligible.
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Vin +
− Vout

1 V

Vin

t
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0

Vout

V+
sat

V−
sat

0 t

Figure 6.2 Using the op-amp as a comparator.

and the voltage applied to the inverting input. The relationship between the input
and output signals is clearly not proportional (i.e., the operation is non-linear).

6.3 Linear applications

We will see additional examples of non-linear applications later, but now we
turn to the more common linear applications. As we shall see, these circuits are
characterized by a single feedback connection from the output to the inverting input
of the op-amp. The circuits can be analyzed by applying two approximate rules
called the golden rules of ideal linear op-amp operation.

1. The output will do whatever is necessary to make the voltage difference between
the inputs zero.

2. No current flows into the inputs.

The application of these rules is best illustrated by working several examples.
The first of these is shown in Fig. 6.3. An input voltage is applied to the inverting
input through resistor R1 and a feedback resistor Rf is connected between this input
and the output. Our method of applying rule 1 is to take the voltage at the two
inputs to be equal and then determine the output voltage required to achieve this.
Since the non-inverting (+) input is connected to ground, we take the voltage at

www.electronic07.com
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Vin
R1

I1

−
+

VoutA

Rf

If

Figure 6.3 Simple inverting amplifier.

point A also to be zero. Ohm’s Law tells us that Vin − VA = I1R1 so

I1 = Vin − VA

R1
= Vin

R1
. (6.3)

Next, we apply KVL starting at point A:

VA − If Rf − Vout = 0. (6.4)

But, VA = 0 (by rule 1) and If = I1 (by rule 2). Applying these and the result of
Eq. (6.3) to Eq. (6.4) we obtain

Vout = VA − If Rf = −I1Rf = −Rf

R1
Vin. (6.5)

Thus the output is proportional to the input, with a proportionality constant −Rf/R1
set by the two resistors. The minus sign means the signal is inverted.

Recalling our black box model for an amplifier, the input resistance is just the
effective resistance between the input terminals of the amplifier. For this circuit,
the input terminals are the one marked Vin and ground. Since point A is at ground
potential, the input resistance is simply R1. The output resistance is not so simply
found, but the op-amp is designed to have a very low output impedance.

We thus have a nice voltage amplifier with easily selectable input resistance
and voltage gain set by two resistor values. If we contrast this with the relative
difficulty of designing a transistor amplifier, it is easy to see why the op-amp is
such a popular component.

Our next application is shown in Fig. 6.4. In this case, the input voltage is applied
directly to the (+) input.2 By rule 1, the voltage at point A is equal to the input
voltage, VA = Vin. By Ohm’s Law, the current through resistor R1 is given by
I1 = VA/R1. Rule 2 tells us that I2 = I1, since no current flows into (or out of) the
(−) input. Applying KVL starting at point A gives

VA + I2R2 − Vout = 0. (6.6)

2 Note that, for convenience, we have flipped the position of the (+) and (−) inputs on the op-amp
circuit symbol.
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Vin +
− Vout

A

R1I1

R2

I2

Figure 6.4 The non-inverting amplifier.

Vin

−
+

Vout
Figure 6.5 The buffer or voltage follower.

Solving for Vout and applying our other results yields

Vout =
(

1 + R2

R1

)
Vin. (6.7)

Our analysis shows that this circuit is a non-inverting amplifier with a gain set by
the ratio R2/R1. Interestingly, as a consequence of rule 2, the input impedance for
this amplifier is infinite.3

Figure 6.5 shows the buffer circuit (also called a voltage follower). The analysis
here is particularly simple since Vout is directly connected to the (−) input, and,
by rule 1, the voltage at the (−) input is equal to the voltage at the (+) input. Thus,
for this circuit, the output is the same as the input, Vout = Vin. This does not seem
particularly useful until one considers the input and output impedances. As with
the non-inverting amplifier, the input impedance is infinite, and, as with all op-amp
circuits, the output impedance is low. This circuit can thus be used between a high
impedance voltage source and a low impedance load to alleviate loading due to the
voltage divider effect.4

An adder circuit is shown in Fig. 6.6. The version shown here has three inputs,
but any number is possible. As before, rule 1 tells us that VA = 0. Ohm’s Law then
gives us the current through each of the input resistors: I1 = V1/R1, I2 = V2/R2,
and I3 = V3/R3. These three currents add (by KCL), and, since none of the current

3 Of course, in the real world, there are no infinities, but the input impedance will be very large.
4 Recall that this same role is played by the common-collector transistor amplifier.
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I3 Figure 6.6 The adder circuit.
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Figure 6.7 The differential amplifier.

flows into the (−) input, If = I1 +I2 +I3. Finally, KVL gives VA −If Rf −Vout = 0.
Putting this all together then yields

Vout = −
(

Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3

)
. (6.8)

Our circuit thus gives us a weighted sum of the input voltages with the weighting
determined by the resistor values. If we want a simple unweighted sum, we simply
choose all the resistor values to be the same. Note that our analysis is easily
extended to include any number of inputs: each input will add a term to Eq. (6.8)
of the form Rf

Ri
Vi where i is the input number.

Op-amps can be used to perform other mathematical functions as well. Figure 6.7
shows the differential amplifier circuit which can be used to subtract two voltages.
Because of rule 2, no current flows into the (+) input, so the resistors R1 and R2
attached to that input form a voltage divider with

VB =
(

R2

R1 + R2

)
V2. (6.9)

By Ohm’s Law, I1 = (V1 − VA)/R1 and, by KVL, Vout = VA − I2R2. By rule 1,
VA = VB, and by rule 2, I2 = I1. Putting this all together yields

Vout = VA − I2R2 =
(

R2

R1 + R2

)
V2 −

(
V1

R1
− R2

R1 + R2

V2

R1

)
R2 = R2

R1
(V2 − V1)

(6.10)
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where this last step requires a little algebra (left to the reader). Thus the output
voltage gives the difference between the two inputs, weighted by the factor R2/R1.

An integrator circuit is shown in Fig. 6.8. Since the (+) input is connected to
ground, rule 1 tells us that VA = 0 and Ohm’s Law yields I1 = Vin/R. KVL gives
VA − Q

C − Vout = 0. But Q = ∫ I2dt, and, by rule 2, I2 = I1. Hence,

Vout = −Q
C

= − 1
C

∫
I1dt = − 1

RC

∫
Vindt. (6.11)

In this case, the output is equal to the time integral of the input voltage weighted
by the factor −1/RC.

This circuit has an important advantage over the RC integrator that we examined
back when we studied RC circuits in Chapter 2. For that circuit to function as an
integrator, the value of RC had to be large, and that meant that the magnitude of
the output voltage (which was proportional to 1/RC) was small. There is no such
restriction on the operation of the circuit we have analyzed here. It will operate as
an integrator for any value of RC, so we need not struggle with the small output
signal levels characteristic of the RC integrator.

Finally, we consider the differentiator circuit of Fig. 6.9. As before, VA = 0, so
Vin = Q/C. Taking the time derivative of this gives

dVin

dt
= 1

C
dQ
dt

= 1
C

I1. (6.12)

But KVL gives Vout = −I2R and, by rule 2, I2 = I1. Thus

Vout = −RC
dVin

dt
. (6.13)

Vin
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I1

−
+

VoutA

C

I2

Figure 6.8 The op-amp integrator.

Vin
C

I1

−
+

VoutA

R

I2

Figure 6.9 The op-amp differentiator.
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The output is the time derivative of the input, weighted by the factor −RC. Again,
note that our derivation places no restriction on the value of RC.

6.4 Practical considerations for real op-amps

Up to this point we have assumed our op-amp circuits were governed by Eq. (6.1)
and Eq. (6.2) for non-linear circuits and by the golden rules for linear circuits. In
practice, there are a few complications, and these need to be understood to use
operational amplifiers successfully.

6.4.1 Bias currents

Golden rule 2 says that no current flows into the inputs of the op-amp. Actually, a
small DC current must flow into each input. These bias currents are denoted I+

B and
I−
B for the (+) and (−) inputs respectively. For the 741 op-amp, the bias currents

are specified as less than 500 nA. Because they are so small, we can usually ignore
them; that is why golden rule 2 works. Under certain circumstances, however, they
can cause large effects.

Consider the circuit shown in Fig. 6.10. This is just the non-inverting amplifier of
Fig. 6.4 with a capacitor placed on the input (perhaps to filter out the DC component
of the input signal). This seemingly innocent addition, however, will keep the circuit
from working at all: the output will be saturated at V+

sat and unresponsive to the
input. The reason is that the capacitor has blocked the DC bias current for the (+)
input. Since this current is not present, the op-amp will not work.

Another consequence of non-zero bias currents is illustrated in Fig. 6.11. This,
again, is the non-inverting amplifier, but now we have grounded the input, perhaps
to test the circuit; if the input is zero, we expect from Eq. (6.7) that the output will
be zero. Since the (+) input is grounded, point A will also be zero volts (by rule 1),

Vin +
− Vout

R1
R2

Figure 6.10 An AC coupled non-inverting amp?



160 Operational amplifiers
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Figure 6.11 Bias currents in the non-inverting amp.
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Figure 6.12 General analysis of bias current
effects.

and no current will flow through resistor R1. The bias current I−
B must therefore

flow through R2, making the output voltage

Vout = I−
B R2 = (500 nA)(1 M�) = 0.5 V (6.14)

where we have used the maximum 741 bias current and a large feedback resistor
value R2 = 1 M� for the calculation. This is certainly not the expected zero volts
output and is totally incomprehensible unless one is aware of the bias currents. One
lesson to be drawn from this example is to avoid large feedback resistors since they
enhance the effect of the bias current.

While bias currents are always present, there is a clever way to minimize their
effects. Consider the circuit shown in Fig. 6.12. As we will see, this can represent
a slightly modified version of the inverting or non-inverting amplifiers, or the
buffer circuit, but since we are interested in bias current effects, we have grounded
the inputs. We now apply the usual circuit analysis rules to determine the output
voltage. The voltage at point B will be given by VB = −I+

B R and this, by rule 1,
is equal to VA. Applying KCL and Ohm’s Law to the upper portion of the circuit
gives

I−
B = IB1 + IBf = −VA

R1
+ Vout − VA

Rf
= I+

B
R
R1

+ I+
B

R
Rf

+ Vout

Rf
. (6.15)
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Solving this for Vout then yields

Vout = I−
B Rf − I+

B R
(

1 + Rf

R1

)
. (6.16)

If we now choose

R = R1Rf

R1 + Rf
(6.17)

Eq. (6.16) reduces to

Vout = Rf
(
I−
B − I+

B
)

. (6.18)

The resistor choice of Eq. (6.17) thus gives us an output that depends on the
difference between the bias currents. This should be compared to the case in
Eq. (6.14) where the output depends directly on I−

B . In a perfectly symmetric op-
amp, the two bias currents would be the same and we would have totally mitigated
the effect of the bias currents. For real op-amps, the maximum difference is
specified as the input offset current Ios ≡ I−

B − I+
B . For the 741 op-amp, Ios < I±

B /4.
If this is still too large to tolerate, a higher quality op-amp will often sport better
specifications for the bias currents (e.g., I±

B < 0.05 nA for the CA3130 op-amp).
Application of this mitigation technique to some of our previous circuits is shown

in Figs. 6.13, 6.14, and 6.15. For the first two of these, the resistor R with value
given by Eq. (6.17) is added to the (+) input of the op-amp. The reader can verify
that both of the resulting circuits match the circuit of Fig. 6.12 if the inputs are
grounded. Note that these additional resistors make no sense at all unless we know
about bias currents: since there is no current into the (+) input there is no voltage
drop across R, so including it makes no difference.

The modifications to the buffer circuit in Fig. 6.15 can be understood as a special
case of Fig. 6.12 where R1 → ∞. In this case, Eq. (6.17) yields R = Rf , so the
mitigation effect is obtained for any resistor value, as long as the two are equal.

Vin
R1 −

+
Vout

R

A

Rf

Figure 6.13 Applying the bias current
mitigation technique to the inverting amplifier.
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Vin
R +

− Vout

A

R1
Rf

Figure 6.14 Applying the bias current mitigation
technique to the non-inverting amplifier.

Vin
R

−
+

Vout

Rf

Figure 6.15 Applying the bias current mitigation
technique to the buffer.

6.4.2 Input offset voltage

Asymmetries between the internal circuits driven by the (+) and (−) inputs can
also lead to non-zero output voltages. The amount of voltage necessary at the
input terminals to return the output to zero is called the input offset voltage, Vio.
This offset voltage acts like a small voltage source (Vio < 5 mV for the 741) in
series with one of the inputs. Thus the simple experiment of taking an op-amp and
grounding both inputs would not produce a zero output, as expected from Eq. (6.1),
but a saturated output (remember it only takes about 70 μV difference in the inputs
to saturate the output). The solution in this case is built into the op-amp circuit.
Most op-amps have additional inputs for external balancing or nulling. One simply
connects the ends of a potentiometer (typically 10 k�) to these inputs and connects
the slider of the potentiometer to V−

cc. The potentiometer is then adjusted to reduce
to output to zero.

6.4.3 Slew rate limiting

Suppose we suddenly (i.e., instantaneously) change the input of one of our op-amp
amplifiers. How fast will the output of the op-amp change? The answer to this
question depends on the slew rate. The slew rate (abbreviated SR) is the maximum
rate of change of the output voltage.

For the 741 op-amp, the slew rate is 0.5 V/μs. To appreciate the meaning of
this, let’s look at two examples. First we ask: how long would it take our op-amp
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Vin

t

Vout

t

Figure 6.16 Distortion of a square wave due to slew rate limiting.

to switch from its minimum voltage V−
sat to its maximum voltage V+

sat? Assuming
±15 V power supplies, V±

sat = ±14 V, and we have

t = �V
SR

= 28 V
0.5 V/μs

= 56 μs. (6.19)

This is a fairly slow response. The result can be a distorted output waveform, as is
shown in Fig. 6.16. The output tries to respond to the changed input (in this case a
square wave) as fast as it can, but is limited by the slew rate.

As a second example, imagine that the output is a sine wave of the form A sin ωt.
The rate of change of this output is then dV/dt = ωA cos ωt. To avoid slew rate
limiting, we want the maximum rate of change to be less than the slew rate, or
ωA < SR. If we suppose that A = 10 V, then, for the 741, the highest frequency
we can handle is

fmax = SR
2πA

= 0.5 V/μs
2π · 10 V

≈ 8 kHz. (6.20)

Thus the frequency that can be amplified without distortion is rather limited. Note
that this limit on the frequency decreases as the amplitude of the output signal
increases. The value of fmax when A = Vsat is called the full power bandwidth.

The only way to avoid the problem of slew rate limiting is to obtain an op-amp
with better specifications. For example, the CA3130 op-amp has a slew rate of
10 V/μs, twenty times better than the 741. There is, however, a trade-off between
slew rate and stability. An op-amp with high slew rate will often also be susceptible
to instability – an amplifier circuit built with such an op-amp may start to oscillate
spontaneously.



164 Operational amplifiers

6.4.4 Frequency response

We have already seen that the slew rate of an op-amp imposes a limit on the
frequency of the output signal. But as we can see from Eq. (6.20), this can be
alleviated by reducing the amplitude of the output signal. There is another limit,
however, imposed by the frequency response of the op-amp. This limit is present
regardless of the amplitude of the output signal.

A representative op-amp frequency response is shown in Fig. 6.17. The open-
loop voltage gain AOL (cf. Eq. (6.1)) is plotted versus signal frequency on a log-log
scale. At low frequencies, AOL = 2 × 105, but this value rolls off as the frequency
increases. This roll-off is deliberately designed into the op-amp to avoid oscillation
at high frequencies. Since the impedance of stray capacitances decreases with
frequency, it is easier for high frequency signals to couple between the output and
the input of the op-amp, thus producing unintentional positive feedback and, hence,
oscillation. The roll-off counteracts this by reducing the amount these stray signals
are amplified.

This frequency response also affects the gain of our linear circuits (e.g., the
inverting and non-inverting amplifiers of Figs. 6.3 and 6.4). This gain, often called
the closed loop gain ACL, is shown by the horizontal dotted line in Fig. 6.17 for
the particular case where ACL = 103. The gain remains at this value as the signal
frequency increases until it intersects with the open loop gain curve, after which it,
too, rolls off.

The frequency range over which ACL is constant is called the closed loop band-
width, BCL. For the portion of the curve where AOL is decreasing with frequency, the
product ACLBCL is a constant, called either the gain bandwidth product or the open

Gain
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BCL BOL
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102
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Figure 6.17 Frequency response of the 741 op-amp.
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loop bandwidth BOL. This latter quantity is also defined as the frequency where the
gain falls to one. For the 741, BOL = 1 MHz (cf. Fig. 6.17). Thus

BCL = BOL

ACL
. (6.21)

A high gain amplifier will therefore have a smaller bandwidth and vice versa. If you
want an amplifier with a large bandwidth, you either have to decrease the amplifier
closed-loop gain or buy an amplifier with a larger value for BOL.

6.5 Non-linear applications II

As a lead-in to our next chapter and another example of a non-linear application,
consider the circuit in Fig. 6.18, the op-amp astable multivibrator. At first glance,
this may appear to be a linear circuit because it has feedback between the output
and the (−) input. However, it also has feedback between the output and the (+)

input. Linear circuits only have the negative feedback connection.
Because of all the feedback connections, it is difficult to know where to begin

in our analysis of this circuit. We start by assuming the the capacitor is initially
uncharged (as it would be if we had just constructed the circuit). The voltage at
point A (the inverting input of the op-amp) is thus zero. If we suppose that the
output is zero, then the voltage at point B (the non-inverting input) is also zero,
and the circuit will remain in this state since Eq. (6.1) is satisfied. This, of course,
would not be a very interesting circuit.

The inevitable circuit noise, however, will cause the output voltage to fluctuate
slightly. Suppose the output voltage becomes slightly positive.5 The voltage divider
formed by resistors R1 and R2 will then produce a positive voltage at point B. Since
point A is initially zero, this positive difference between the inputs produces a
much larger positive voltage at the output (cf. Eq. (6.1)). The feedback then makes
the voltage at the (+) input larger and the output quickly becomes saturated: Vout →
V+

sat. The voltage at point B is now also constant with value V+
satR2/(R1 + R2).

The capacitor C starts to charge up through resistor Rf with time constant Rf C,
driven by the output voltage. We know from our studies of RC circuits that, if we let
the charging process go on, the voltage across the capacitor would eventually reach
the output voltage (which at this point is V+

sat). But this will never happen, because
as soon as the voltage at point A exceeds the voltage at point B (which is a fraction

5 The analysis is not crucially dependent on this assumption; the circuit will also start to oscillate if we
assume the fluctuation is negative.
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Figure 6.18 The op-amp astable multivibrator.
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Figure 6.19 Resulting waveforms for the astable multivibrator.

of V+
sat), the voltage difference between the inputs will be negative and the output

will be driven to its negative saturation value, Vout → V−
sat. This is reinforced

by the fact that point B now becomes negative with value V−
satR2/(R1 + R2). The

capacitor now charges toward V−
sat until point A falls below point B, at which

point the output switches to is positive saturation value. The process continues and
produces a square wave output as shown in Fig. 6.19. We have also shown in this
figure the voltage at point A to emphasize its role in setting the timing for the output
switching. Here we have defined the switch voltage ±Vs ≡ ±V+

satR2/(R1 + R2)

and have assumed that V−
sat = −V+

sat, as is typically the case.
Let’s quantify this analysis by deriving an expression for the period of the

output waveform. From our qualitative discussion, it is clear that the period is set
by the charging of the capacitor. The relevant portion of our circuit is shown in
Fig. 6.20.
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Vout

Rf

VA
C

Figure 6.20 The RC circuit portion of the astable multivibrator.

Recall from Chapter 2, Eq. (2.22), that the general solution for the RC charging
problem is given by

VA = V1e−t/Rf C + V2 (6.22)

where V1 and V2 are constants and we have included the fact that, in our problem,
the voltage across the capacitor is VA. The constants are determined by two limits:
at t = 0, VA = −Vs, and for t → ∞, VA → V+

sat (although, in this problem, this
point is never reached). Using the second limit in Eq. (6.22) gives us V2 = V+

sat.
Using this result and the t = 0 limit, the reader can verify that

V1 = −V+
sat

[(
R2

R1 + R2

)
+ 1
]

(6.23)

so our general solution becomes

VA = −V+
sat

[(
R2

R1 + R2

)
+ 1
]

e−t/Rf C + V+
sat. (6.24)

Referring to Fig. 6.19, we want to know the time t0 when VA = +Vs since this will
give us the time when the output switches from positive to negative. Plugging into
Eq. (6.24) gives(

R2

R1 + R2

)
V+

sat = −V+
sat

[(
R2

R1 + R2

)
+ 1
]

e−t0/Rf C + V+
sat. (6.25)

Solving this for t0 yields (after some algebra)

t0 = Rf C ln
(

1 + 2R2

R1

)
. (6.26)

Since the discharge portion of the capacitor signal is symmetric with the charging
portion, the period of our square wave oscillator is just twice this value: T = 2t0.
Note that the period is set primarily by the product Rf C, as we might have expected.
There is a weaker dependence on resistors R1 and R2, since these define Vs.
Interestingly, the dependence on V+

sat has canceled out, so variations in the power
supply will not affect the frequency of this oscillator.
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EXERCISES

Note: for these exercises you can ignore non-ideal op-amp effects (e.g., bias
currents).

1. For the circuit of Fig. 6.21, find Vout as a function of Vin and determine the input
impedance of the circuit.

Vin
10 k� −

+
Vout

10 k�

A

100 k�

Figure 6.21 Circuit for Problem 1.

2. Derive an expression for the output voltage of the circuit in Fig. 6.22 in terms
of the four input voltages. Simplify your result as much as possible.

V2
R

−
+

Vout

R
V3

R
V4

R

R
V1

R

Figure 6.22 Circuit for Problem 2.

3. For the circuit in Fig. 6.23, find an expression for the current through the
ammeter in terms of the input voltage. Assume the meter has zero internal
resistance. How does the sign of the input voltage affect the answer?

Vin
R1

−
+

R
A

R R

Figure 6.23 Circuit for
Problem 3.
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4. What is the maximum peak-to-peak output voltage for a 741 op-amp with ±15 V
power supplies? How small a load resistance will this amplifier drive with its
output at the maximum level?

5. Refer to Fig. 6.24 and determine the output voltage for each circuit. Assume
V±

sat = ±10 V.

+5 V

−
+

Vout
+5 V −

+
Vout

−5 V −
+

Vout −5 V

−
+

Vout

Figure 6.24 Circuits for Problem 5.

−
+

Vout

+12 V

−12 V

2 k�

8 k�

(a)

−
+

Vout

1 k� 10 k�

+1 V

(b)

−
+

Vout

1 k�−3 V
6.2 V

(c)

−
+

Vout

2 k�+1 V

2 k�
+2 V

1 k�

(d)

Figure 6.25 Circuits for Problem 8.
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6. Draw the schematic diagram of an inverting amplifier with Ri = 5 k� and a
voltage gain of −75.

7. If the circuit of the previous problem uses ±12 V power supplies, what input
voltage will cause the output to saturate?

8. Determine the output voltage for each circuit in Fig. 6.25.
9. Explain the operation of the circuit shown in Fig. 6.26 as Vin is varied.

+10 V

1 k�

5.1 V

−
+

Vin

390 �

Red Green

Figure 6.26 Circuit for Problem 9.
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7 Oscillators

7.1 Introduction

The op-amp astable oscillator covered in Section 6.5 was our first example of
an oscillator – a circuit that produces a periodic output signal without an input
signal. These types of circuits have some kind of feedback mechanism that allows
them to oscillate spontaneously. We can categorize oscillators into two broad
groups: relaxation oscillators and sinusoidal oscillators. Each of these groups has
common features. The relaxation oscillators are characterized by non-sinusoidal
output waveforms, timing that is set by capacitor charging and discharging, and the
non-linear operation of its active components. The analysis of relaxation oscillator
circuits is done in the time domain (i.e., by determining the circuit response as a
function of time). For example, our op-amp astable oscillator has a square wave
output with a period set by the charging/discharging of capacitor C through resistor
Rf , and the op-amp is operating non-linearly, switching back and forth between its
saturation voltages. On the other hand, sinusoidal oscillators, as the name implies,
have sinusoidal output waveforms and linear operation of the active components,
and the analysis is done in the frequency domain (i.e., by considering how the
circuit responds to different frequencies). We will now examine examples of each
type of oscillator.

7.2 Relaxation oscillators

7.2.1 SCR sawtooth oscillator

Our first relaxation oscillator is shown in Fig. 7.1. It uses two components we have
studied previously: the SCR and the bipolar transistor. To begin, recall that the
SCR will remain in its off-state unless there is current flowing into the gate1 and no

1 Here we assume that the power supply voltage is less than the critical voltage for the case of zero gate
current Vcc < Vcrit0.
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Rs
C

Vcc

R1

Vg

R2
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Vout

Vc

Figure 7.1 The SCR sawtooth oscillator.

gate current will flow unless the voltage at the gate Vg is greater than the voltage at
the cathode. We can then construct a description of the circuit operation as follows.

1. The voltage at the gate of the SCR, Vg, is set by the voltage divider formed by
R1 and R2 to the value

Vg =
(

R2

R1 + R2

)
Vcc. (7.1)

If we assume the capacitor is initially uncharged (as it would be if we had
just turned on the circuit), then the voltage across the capacitor Vc is zero and
Vout = Vcc. Thus Vg < Vout and no gate current can flow, so the SCR does not
turn on.

2. The transistor has a fixed base current

Ib = Vcc − 0.6
Rb

(7.2)

and thus will have a constant collector current Ic = βIb. Since the SCR is off,
this current must flow through the capacitor, thus charging it at a constant rate
dQ/dt = Ic and increasing Vc.

3. Eventually, Vc becomes large enough (and, thus, Vout small enough) that
Vg > Vout. The SCR then turns on and discharges the capacitor through the
resistor Rs. Rs is made small enough that this discharge happens quickly, but
must be large enough to prevent peak currents from destroying the SCR.

4. As the capacitor discharges, Vc decreases and Vout increases. The gate current
goes to zero and, as the current through the SCR drops below Icrit, the SCR
shuts off.2

2 This assumes that the current through the SCR will drop below Icrit. To insure that this happens, we
require Ic < Icrit.
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Vout

Vcc

VT t
T 2T 3T

Figure 7.2 The SCR sawtooth oscillator output.

The output voltage for this oscillator is shown in Fig. 7.2. As noted above, the
output voltage is initially Vcc. Because of the constant charging rate, the capacitor
charges linearly and thus Vout falls linearly. When the output reaches a voltage low
enough to allow the SCR to turn on (labeled VT ), the capacitor discharges quickly
(so quickly it looks instantaneous on this scale) and the process starts again.

As with most oscillators, we would like to have an expression for the period
of the output waveform. By KVL, the output voltage is Vout = Vcc − Vc. But
the capacitor, being charged by the current through the transistor, has voltage
Vc = Q/C = Ict/C = βIbt/C. Thus

Vout = Vcc − β
Ibt
C

. (7.3)

This equation describes the linear decrease of the signal shown in Fig. 7.2. The
period of the signal is defined as the time when Vout = VT . Using this in Eq. (7.3)
gives

T = C
βIb

(Vcc − VT ) = RbC
β(Vcc − 0.6)

(Vcc − VT ) (7.4)

where in the last expression we have used Eq. (7.2) for Ib. It remains to find an
expression for VT . We know that, in order for the SCR to turn on, the output voltage
must be less than the gate voltage Vg. How much less will depend on the necessary
gate current and Rs. For simplicity, we estimate3 VT ≈ Vg. Using Eq. (7.1) in
Eq. (7.4) and simplifying then yields

T = RbCVcc

β(Vcc − 0.6)

(
R1

R1 + R2

)
. (7.5)

It is now clear how each circuit parameter affects the waveform period. An easy
way to make the period of this oscillator adjustable, for example, would be to make
Rb a variable resistor.

3 This is a good approximation since both the gate current and Rs are small.
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Figure 7.3 The transistor astable
oscillator during state 1.

Note how this oscillator has the characteristics of a relaxation oscillator: non-
sinusoidal output (in this case, a sawtooth), timing set by capacitor charging,
non-linear component operation (in this case, the SCR, which is inherently non-
linear, is the relevant component), and analysis in the time domain (we determined
Vout as a function of time in Eq. (7.3)).

7.2.2 Transistor astable oscillator

Our next relaxation oscillator, the transistor astable oscillator, produces a pulse train
output voltage. The two transistors in this circuit, shown in Fig. 7.3, will alternate
being saturated (Vce ≈ 0) or cutoff (Vce ≈ Vcc) with each being in the opposite
state of the other. Thus both transistors in this circuit are operating non-linearly.
The output voltage can be taken off the collector voltage of either transistor.

We will break the operation of this circuit into four steps involving two stable
states and two transitions. Relevant current flows and voltages are shown for the
four steps in Figs. 7.3, 7.4, 7.5, and 7.6.

During state 1 of the circuit, transistor T2 is fully on (i.e., saturated) and T1 is
off (i.e., cutoff). Since T1 is off, there is no current in resistor RL1 and thus no
voltage drop across it. The collector voltage of this transistor, Vc1, is thus equal to
the power supply voltage Vcc. Also since T1 is off, we know its base voltage Vb1
must be less than the 0.6 V necessary to turn the transistor on. On the other hand,
T2 is on, so its base voltage Vb2 ≈ 0.6 V. The base current is supplied through
RB1. Since we assume T2 is saturated, its collector voltage Vc2 ≈ 0. The collector
current comes from two sources: through RL2 and through RB2 and C2. This latter
path charges up capacitor C2.
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RB1
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Figure 7.4 The transistor astable
oscillator during the transition 1 → 2.
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+

Figure 7.5 The transistor astable
oscillator during state 2.
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0 V−(Vcc − 0.6)

Figure 7.6 The transistor astable
oscillator during the transition 2 → 1.
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It is important at this point to note the state of the two capacitors. Since capacitor
C1 has voltage Vcc on its left side and 0.6 V on its right side, it must be charged with
a voltage across it of Vcc − 0.6, with the left side positive as shown. For capacitor
C2, the right side is 0 V. The left side is less than 0.6 V (since T1 is off) but is
increasing in time as C2 charges up. The various voltages and currents associated
with state 1 are shown in Fig. 7.3.

Eventually, the voltage on the left side of C2 will reach 0.6 V, thus turning
on T1, and this will cause a transition between states 1 and 2, represented in
Fig. 7.4. As T1 turns on, its collector voltage goes to zero. At this instant, the
capacitor C1 is still charged to a voltage of Vcc − 0.6; since the left side has been
pulled to zero by the turn-on of T1, the right side must be at −(Vcc − 0.6) so
that the voltage across it remains constant. But the right side of the capacitor is
connected to the base of T2. Making this negative thus shuts off T2. The collector
of T2 now wants to be Vcc. This requires that C2 be charged up. To see this,
note that at the end of state 1, the voltage across C2 was 0.6 V, with the left
side positive. Since T1 is turning on, the left side of C2 will remain at 0.6 V, but
now we want the right side to be Vcc and this requires charging of the capacitor
through RL2 and T1, as shown in Fig. 7.4. This transition spurt of additional
base current through T1 will cause the base voltage Vb1 to increase momentarily
above 0.6 V.

This brings us to state 2, where transistor T1 is fully on and T2 is off. Since
the circuit is symmetrical, the action now is a mirror image of state 1. Since
T2 is off, its collector voltage Vc2 = Vcc and its base voltage Vb2 must be less
than 0.6 V (actually, from the above description of the transition, we know that
−(Vcc − 0.6) < Vb2 < 0.6 V). Since T1 is on, Vc1 ≈ 0 and Vb1 ≈ 0.6 V, with the
base current supplied through RB2. The collector current for T1 comes from two
sources: through RL1 and through RB1 and C1. This latter path charges up capacitor
C1. The circuit during state 2 is shown in Fig. 7.5.

When the voltage on the right side of C1 reaches 0.6 V, T2 will turn on, and this
will cause a transition between states 2 and 1, as shown in Fig. 7.6. As T2 turns
on, its collector voltage is pulled to zero. Capacitor C2 is still charged to a voltage
of Vcc − 0.6; since the right side has been pulled to zero by the turn-on of T2, the
left side must be at −(Vcc − 0.6). But the left side of this capacitor is connected
to the base of T1, so T1 shuts off. The collector of T1 now wants to rise to Vcc and
this requires that C1 be charged up through RL1 and T2, as shown in Fig. 7.6. This
transition spurt of additional base current through T2 will cause the base voltage
Vb2 to increase momentarily above 0.6 V. Note that the time for this transition is
thus set by the time constant RL1C1.
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Figure 7.7 Collector and base voltages for the two transistors in the astable oscillator. The RC
combinations that determine the time scale for various portions of the curve are noted.

Based on this description, we can sketch the voltage waveforms for Vc1, Vc2,
Vb1, and Vb2 shown in Fig. 7.7. During state 1, Vc1 is high and Vc2 is low; Vb2 is
fixed while Vb1 is increasing with time constant RB2C2. The time constant for the
first transition is set by RL2C2. During state 2, Vc1 is low and Vc2 is high; Vb1 is
fixed while Vb2 is increasing with time constant RB1C1. Finally, the time constant
for the second transition is set by RL1C1.

We can now exploit our knowledge of the circuit operation and of RC charging to
find expressions for the duration of the two states. We have seen that the duration
of state 1 is set by the time it takes C2 to charge (through RB2) from its initial
voltage of −(Vcc − 0.6) to 0.6 V. The relevant portion of our circuit is shown in
Fig. 7.8. The right side of capacitor C2 is actually connected to the collector of T2
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Vcc

RB2

Vb1 C2

Figure 7.8 Portion of astable oscillator relevant to state 1
timing calculation.

(cf. Fig. 7.3), but since this transistor is saturated its collector voltage is near zero.
We have thus shown C2 connected to ground in Fig. 7.8.

The path of analysis is now a familiar one. We start with the general solution for
RC charging (with appropriate variable name changes):

Vb1 = V1 exp
(

− t
RB2C2

)
+ V2. (7.6)

Applying our time limits, we see that for t → ∞, Vb1 → Vcc, so V2 = Vcc. At
t = 0, Vb1 = −(Vcc − 0.6). Using this in Eq. (7.6) yields V1 = −(2Vcc − 0.6).
Thus our equation for charging becomes

Vb1 = Vcc − (2Vcc − 0.6) exp
(

− t
RB2C2

)
. (7.7)

State 1 will continue until Vb1 reaches 0.6 V. Plugging this into Eq. (7.7) and solving
for t gives

t1 = RB2C2 ln
(

2Vcc − 0.6
Vcc − 0.6

)
. (7.8)

A similar analysis gives the duration of state 2:

t2 = RB1C1 ln
(

2Vcc − 0.6
Vcc − 0.6

)
(7.9)

so the period of our pulse train is

T = t1 + t2 = (RB1C1 + RB2C2) ln
(

2Vcc − 0.6
Vcc − 0.6

)
. (7.10)

There are two sources of additional restrictions on the circuit components, both
of which are based on assumptions we have made along the way. First, we have
assumed that the capacitor charging during the transitions will take less time than
the duration of the following steady state. This means that

t1 
 RL1C1 and t2 
 RL2C2. (7.11)



7.2 Relaxation oscillators 179

T1

RL1 RB2

+Vcc

Ic

Ib Figure 7.9 Portion of astable oscillator relevant to saturation calculation.
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Figure 7.10 Load line plot for
saturation calculation. The dot shows
the solution when the transistor is
saturated. The collector current at this
point is I sat

c .

In addition to insuring that our circuit analysis is valid, these inequalities also give
output pulses that have less rounding on the leading edge.

The second assumption we have made is that the transistors will be saturated
when they are on. In order to achieve this, we must be sure the transistor gets
enough base current to drive it into saturation. To quantify this, we focus on the
portion of our oscillator circuit shown in Fig. 7.9. Our usual KVL analysis then
gives Vcc − IcRL1 − Vce = 0 and Vcc − IbRB2 − Vbe1 = 0. Solving the first of these
for Ic yields

Ic = Vcc − Vce

RL1
(7.12)

which is our usual load line equation. This is plotted along with the transistor
characteristics in Fig. 7.10.
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The second of our voltage loop equations gives

Ib = Vcc − Vbe1

RB2
. (7.13)

So far our analysis is general. If the transistor is saturated, however, then Ic =
Isat
c ≈ Vcc/RL1 (cf. Fig. 7.10). Also, to drive the transistor into saturation, the base

current should be more, for a given Ic, than it would be in the linear active region.
Thus, Ib > Isat

c /β1, where β1 is the current gain factor for transistor 1. Using
Eq. (7.13) for Ib and the above approximation for Isat

c , we obtain

Vcc − Vbe1

RB2
>

Vcc

β1RL1
(7.14)

or, rearranging,

β1

(
Vcc − Vbe1

Vcc

)
>

RB2

RL1
. (7.15)

A similar analysis for the circuit driving transistor 2 yields

β2

(
Vcc − Vbe2

Vcc

)
>

RB1

RL2
. (7.16)

Equations (7.11), (7.15), and (7.16), then, place important operating restrictions
on our circuit component values in addition to those (Eqs. (7.8) and (7.9)) that set
the timing.

7.2.3 The 555 timer

The 555 timer is another “black box” device that can be used for a number of
purposes. It comes in an 8-pin package similar to the 741 op-amp. A functional
schematic of this device including pin assignments is shown in Fig. 7.11. This is
sufficient for us to understand how the device functions. We have three resistors that
form a flexible voltage divider, two comparators (basically, op-amps), a transistor,
and a new device called a flip-flop. The flip-flop has two outputs, labeled Q and Q̄,
which have opposite states: when Q is high, Q̄ is low, and vice versa. The output
Q is available at pin 3, while Q̄ is fed to the base of the transistor, thus turning
the transistor on or off. The flip-flop also has two inputs, called set and reset. A
high input into set causes Q to go high (i.e., to be set), while a low input into reset
causes Q to go low (i.e., to be reset). The voltage into set comes from the output of
comparator 1 which compares the voltage on pin 2 with an internal voltage derived
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Figure 7.11 Functional schematic for the 555 timer, including pin assignments.

from the voltage divider. The voltage into reset can come either from pin 4 or from
the output of comparator 2, as shown in the schematic.

A few details: the power supply voltage Vcc for the device (input at pin 8) can be
anywhere from 4.5 to 16 V. The Output (pin 3) can produce a maximum of 50 mA
with a voltage level of Vcc − 2 V. The Reset (pin 4) is normally held high (defined
as above 1.0 V); it must be low (below 0.4 V) to reset the flip-flop. If not used,
the Control (pin 5) should be connected to ground via a 0.01 μF capacitor. The
Trigger is normally held high (above 1

3Vcc if the Control is not used) and brought
low (below 1

3Vcc if the Control is not used) to set the flip-flop.

The 555 astable oscillator The 555 is best appreciated by examining some appli-
cations. The first of these is an astable oscillator circuit, shown in Fig. 7.12. Its
operation is as follows.

1. Upon startup, the capacitor is uncharged so the voltage at pin 2, V2, is zero.
Comparator 1 compares this voltage with 1

3Vcc coming from the internal voltage
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Figure 7.12 The 555 astable oscillator.
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Figure 7.13 Output and capacitor
voltages for the 555 astable oscillator.

divider; the resulting high output sets the flip-flop. The output is thus high and
the transistor is turned off (since Q̄ is low).

2. The capacitor charges with time constant (R1 + R2)C. When the voltage across
the capacitor (pin 6) exceeds 2

3Vcc, comparator 2 outputs a low level which
resets the flip-flop. The output then goes low, and the transistor is turned on.

3. The capacitor can now discharge through the transistor with time constant
R2C. The voltage across the capacitor falls until it becomes less than 1

3Vcc, at
which point the flip-flop is set again. This charge/discharge cycle then repeats
indefinitely.

The output voltage and the voltage across the capacitor for the astable oscillator
are shown in Fig. 7.13. Once the circuit has started, the capacitor charges and
discharges between 1

3Vcc and 2
3Vcc, while the output switches between high (during

charge) and low (during discharge). It can be shown that the duration of the high
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Figure 7.14 The 555 used as a timer.

and low portions of the output waveforms are given by

ton = (R1 + R2)C ln 2 and toff = R2C ln 2. (7.17)

555 monostable operation (timer mode) As a second example, we consider the
use of the 555 as a timer.4 The circuit is shown in Fig. 7.14 and operates as
follows.

1. Normally, the flip-flop is reset. This means that the output is low, and the
transistor is turned on, so the capacitor is uncharged.

2. When the button is pushed, the Trigger input is grounded. This sets the flip-flop,
makes the output high, and turns off the transistor.

3. Now the capacitor can charge up. It charges with time constant RC until V6 >
2
3Vcc, at which point the flip-flop is reset and C is quickly discharged. The circuit
is thus left in its starting state.

The relevant waveforms for this circuit are shown in Fig. 7.15. A single pulse
is produced at the output of the 555. This can be used to set the duration of some
other process. The length of this pulse is set by the RC charging of the capacitor
and is given by

ton = RC ln 3. (7.18)

4 Strictly, this circuit is out of place here since it is not a relaxation oscillator, but discussing it here will
give some flavor of the versatility of the 555.
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voltages for the 555 monostable
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Vcc 48

A Trig2

1 5

B

3

R1

Dis 7

Thres 6

C1

1 k� 0.001 μF

48

4.7 k�

C
Trig2

10 k�

1 5

D

3

R2

Dis 7

Thres 6

C2

Figure 7.16 Cascading two 555 timers.

For some applications (e.g., producing a sequence of timed events) we would
like to start a second timer at the end of the pulse output by a first timer. Figure 7.16
shows a method to cascade two or more timers. The first timer (on the left) is
configured as in Fig. 7.14. The configuration of the second timer is similar, but its
Trigger input is held at 0.68Vcc by the voltage divider formed by the 4.7 k� and
10 k� resistors. Note that this value is set well above the level necessary to trigger
the second timer (i.e., 1

3Vcc). The output of timer 1 is also connected to the Trigger
of timer 2 through the 1 k� resistor and the 0.001 μF capacitor. The capacitor,
along with the circuit resistors, forms a differentiator. The negative spike resulting
from the differentiation of the timer 1 output is enough to pull the Trigger input of
timer 2 below 1

3Vcc, and thus timer 2 is activated. The relevant waveforms for this
process are shown in Fig. 7.17.

Two final notes on the use of the 555. It is sometimes desirable to invert the
output voltage of the 555. A simple transistor inverter (see, e.g., Section 4.3) will
do the job. The output of the 555 is connected to the transistor base through a
resistor and the inverted signal is taken from the collector of the transistor. The
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Figure 7.17 Waveforms for the
cascading circuit.

base resistor must be chosen small enough to insure that the transistor is saturated
by the 555 output.

None of our applications has used the Control input of the 555. Referring to
Fig. 7.11, we see that placing a voltage Vcon on the Control input changes the
comparison voltage of comparator 1 (i.e., the trigger level) to 1

2Vcon and the
comparison voltage of comparator 2 (i.e., the threshold level) to Vcon. We will
leave it as an exercise to explore how these changes affect the astable oscillator
operation.

7.3 Sinusoidal oscillators

We now turn to the other major class of oscillators, the sinusoidal oscillators. Since
these oscillators all have a sinusoidal output, our analysis focuses on determining
the frequency of this sine wave. It is useful for sinusoidal oscillators to employ
some of the ideas we developed when discussing feedback in Section 4.4.9. We
saw that the gain of an amplifier with feedback was

a′ = a
1 − aβ

(7.19)

where a was the gain of the amplifier without feedback, and β was the feedback
ratio or the fraction of the amplifier output that was added to the input.
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For an oscillator circuit, we have no input signal. If aβ = 1, however, Eq. (7.19)
says that our circuit has infinite gain. Any small fluctuation on the output will
automatically be amplified by a huge amount, and this feedback will continue until
the circuit reaches a steady condition. The requirement that aβ = 1 for oscillation
is called the Barkhausen criterion. As we will see, β is usually a function of
frequency and the Barkhausen criterion is thus only satisfied for one frequency.
That frequency, then, will be the frequency of our output waveform.

7.3.1 RC oscillator

Our first example of a sinusoidal oscillator is the RC oscillator shown in Fig. 7.18.
The amplifier portion of this circuit should look familiar – it is the common-emitter
transistor amplifier. Recall that the voltage gain of this amplifier is given by

a = vout

vin
= −β(Rc‖RL)

rbe + (β + 1)Re
. (7.20)

The minus sign in this expression tells us that the output of this amplifier is inverted
or, for a sinusoidal signal, shifted by 180 degrees. Since we want aβ to be positive
to satisfy the Barkhausen criterion, our feedback circuit must introduce another
180 degree phase shift.

We employ a three-stage RC high-pass filter for our feedback network. Recall
from our early studies of RC circuits that a high-pass filter also acts as a positive
phase shifter, with the phase shift given by φ = tan−1(1/ωRC). For the high-pass
filter, this phase is between zero and 90 degrees, so it is reasonable to expect that
three of these could produce 180 degrees of phase shift if the frequency was right.

For a more rigorous analysis, consider the feedback network alone, as shown in
Fig. 7.19. We use the mesh loop method, employing the current loops indicated.
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Figure 7.19 The feedback network for the RC oscillator.

These produce the following three equations:

Vin = I1

(
1

jωC1

)
+ (I1 − I2)R1 (7.21)

0 = I2

(
1

jωC2

)
+ (I2 − I3)R2 + (I2 − I1)R1 (7.22)

0 = I3

(
1

jωC3

)
+ I3R3 + (I3 − I2)R2. (7.23)

For the oscillator of Fig. 7.18, all the resistor values and all the capacitor values
are the same. Dropping the subscripts and rearranging, we obtain(

R + 1
jωC

)
I1 − RI2 = Vin (7.24)

−RI1 +
(

2R + 1
jωC

)
I2 − RI3 = 0 (7.25)

−RI2 +
(

2R + 1
jωC

)
I3 = 0. (7.26)

These latter three equations have been arranged to emphasize the fact that they
form a set of linear, simultaneous equations for the three unknowns I1, I2, and I3.

We are interested in finding β, the feedback ratio for this network. Now since β

is the ratio of the output voltage to the input voltage, and since the output voltage
is I3R, we need only solve our equations for I3. Brute force algebra or Cramer’s
Method of Determinants (see Appendix B) can be employed to yield

I3 = VinR2(
R + 1

jωC

) [(
2R + 1

jωC

)2 − R2
]

− R2
(

2R + 1
jωC

)

= VinR2

R3 − 5 R
ω2C2 + 1

jωC

[
6R2 − 1

ω2C2

] (7.27)
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and

β = Vout

Vin
= I3R

Vin
= 1

1 − 5
(ωRC)2 + j

[
1

(ωRC)3 − 6
ωRC

] . (7.28)

Now, recall that our goal is to make aβ = 1, and since a is negative and real for
the common-emitter amplifier, β must also be negative and real. To be real, the
imaginary part must be zero:

1
(ωRC)3 − 6

ωRC
= 0 (7.29)

which is satisfied only if

ω = 1√
6RC

≡ ω0 (7.30)

so the oscillator will have this frequency. Plugging this ω back into Eq. (7.28),
we get β = − 1

29 . Thus, to satisfy the Barkhausen criterion, our amplifier must be
designed to have a voltage gain a = −29.

7.3.2 Oscillator stability

An important issue when evaluating the merit of an oscillator is frequency stability.
We have shown for the RC oscillator that the Barkhausen criterion is satisfied
exactly for one frequency ω0. In practice, the frequency of the oscillator will tend
to drift away from ω0. Eventually, the circuit senses something is wrong (because
the phase shift is no longer 180 degrees) and returns the oscillator frequency back
to ω0.

For most applications, this frequency drift is undesirable, so when evaluating an
oscillator we would like to know how much the oscillator can drift before it corrects
itself. It is useful in this regard to plot the phase shift of our feedback network as a
function of frequency. From Eq. (7.28), the phase φ of the output signal relative to
the input is given by

tan φ = Im(β)

Re(β)
=

1
(ωRC)3 − 6

ωRC

1 − 5
(ωRC)2

=
1 −

(
ω
ω0

)2

1√
6

(
ω
ω0

) [
1
6

(
ω
ω0

)2 − 5
] . (7.31)

A plot of the relative phase (i.e., φ−180) versus the scaled frequency ω/ω0 is shown
by the curve labeled “Simple RC” in Fig. 7.20. The relatively weak dependence
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Figure 7.20 Stability plot for the simple RC
and Wein bridge networks.
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C R R1
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Figure 7.21 The RC Wein bridge feedback network.

of φ on ω means that the oscillator frequency can drift quite a bit before the phase
changes enough for the oscillator to correct itself, so the stability of this feedback
network is not very good.

7.3.3 RC Wein bridge oscillator

A feedback network with better stability characteristics is the RC Wein bridge,
shown in Fig. 7.21. An analysis of this network gives

β = 1

3 + j
(

ω
ω0

− ω0
ω

) − 1
1 + R2

R1

(7.32)

where ω0 = 1/RC. The phase difference φ is given by

tan φ =
−
(

1 + R2
R1

) (
ω
ω0

− ω0
ω

)
3R2

R1
−
(

ω
ω0

− ω0
ω

)2 − 6
. (7.33)

The relative phase given by Eq. (7.33) is also plotted in Fig. 7.20 where, for
example, we have chosen the case R2/R1 = 1.95. Note that here the phase varies
much more rapidly with ω than for the simple RC network. This means that an
oscillator using this network will have better frequency stability than one using the
network of Fig. 7.19.
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Vout
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Figure 7.22 The Wein bridge oscillator.

C L

Figure 7.23 A simple LC circuit.

An example of such usage is shown in Fig. 7.22. In this case the circuit amplifi-
cation is provided by an op-amp. The circuit also employs an interesting technique
to control the output amplitude. R1 is a light bulb, and R2 is selected so that
R2 = (2 + ε)R1, where ε is a small number. Under these conditions, it can be
shown that Eq. (7.32) reduces to β ≈ 1

9ε. If the output voltage increases, the
current through the light bulb increases and heats the bulb filament. This increases
R1 and, since R2 is fixed, ε must decrease. The feedback ratio β is thus decreased,
which in turn decreases the output, counteracting the original increase. Similarly,
if the output decreases, cooling of the filament will increase ε and thus increase the
output. This technique thus stabilizes the output amplitude.

7.3.4 LC tank circuit oscillators

Another type of sinusoidal oscillator is the LC or tank circuit oscillator. This type
of oscillator is based on the fact that a simple LC circuit (also called a tank circuit),
such as that shown in Fig. 7.23, will sustain oscillations. Applying KVL to this
circuit produces

Q
C

+ L
dI
dt

= 0. (7.34)

Taking the derivative then gives

d2I
dt2

+ 1
LC

I = 0. (7.35)
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Figure 7.24 A Hartley oscillator.

This is the harmonic oscillator equation with well-known solution I =
I0 sin (ω0t + φ), where ω0 = 1/

√
LC. Without circuit resistance, the current will

oscillate forever. Of course, all real circuits have at least a small resistance. In this
case, the oscillation frequency will still be approximately ω0, but the oscillations
will die away in time. To use this circuit to make a practical oscillator, we need to
figure out how to “kick” the circuit periodically in such a way that the oscillations
are maintained.

7.3.4.1 The Hartley oscillator
One example of such a circuit is the Hartley oscillator shown in Fig. 7.24. The DC
voltage Vb and the resistance Rb produce a constant base current so the transistor
remains in the linear active region. As usual, we treat the DC voltage and the
capacitor spanning Rb as AC shorts, so the bottom of the tank circuit formed by
L1, L2, and C1 is at AC ground.

Suppose that an oscillating current i is flowing in the tank circuit as shown.
Then vbe = jωL2i (here we continue the convention of using lower case for AC
quantities while upper case will indicate the total signal). As the current oscillates,
so does Vbe, as shown in Fig. 7.25. The base current also oscillates, but due to
the non-linear relationship between Ib and Vbe, the current is not sinusoidal, but
exhibits a spike when Vbe is maximum. This in turn causes a spike in the collector
current and a downward spike in the collector voltage Vc. This couples through C2
and causes a depression in the voltage Vt at the top of the tank circuit. This happens
at just the right time to reinforce the oscillations, just like pushing a child on a
swing. To see this last point in another way, note that vt = −jωL1i = −(L1/L2)vbe.
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Figure 7.25 Selected voltages for the
Hartley oscillator.
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L
Figure 7.26 Circuit symbol for
the piezoelectric crystal, and its
equivalent circuit.

The minus sign means that vt is 180 degrees out of phase with vbe, as shown in
Fig. 7.25, so the reinforcing depression in vt does occur at the needed time (i.e.,
when vt is at its minimum).

7.3.4.2 Crystal oscillators
A piezoelectric crystal is often used in LC oscillators. The circuit symbol for
this device is shown in Fig. 7.26 along with its equivalent circuit. Note that the
equivalent circuit is essentially an LC tank circuit. An example of an oscillator
using a piezoelectric crystal is shown in Fig. 7.27.

Different oscillator circuits are used for different purposes. Some of the charac-
teristics of different feedback networks are shown in Table 7.1. Crystal oscillators
are commonly used in a wide variety of applications due to their excellent stability
and low cost, but they are not suitable for high power applications. The RC and
LC feedback networks are used for such cases.
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Table 7.1 Comparison of feedback network characteristics

Feedback circuit Typical frequency range Stability (δω/ω)

RC Wein bridge 5 Hz – 1 MHz 10−3

LC tank circuit 10 kHz – 100 MHz 10−4

Crystal 10 kHz – 100 MHz 10−6 – 10−8

Out

Vcc

Figure 7.27 The Pierce crystal oscillator.

7.4 Oscillator application: EM communications

7.4.1 Introduction

A common way to communicate information is through electromagnetic (EM)
waves. Examples include radio and television waves, telephone microwave links,
light waves in optical fibers, radar, and cell phone signals. There are various ways
of sending information on an EM wave. For analog signals, the most common
techniques are amplitude modulation or AM and frequency modulation or FM.
These techniques are also used when studying wave phenomena in the research lab.

7.4.2 Amplitude modulation

As the name implies, for amplitude modulation we take a constant frequency sine
wave (called the carrier wave) and vary the amplitude with time. The “information”
being communicated is in the amplitude variation. The amplitude variation is
usually at a much lower frequency than the carrier wave. For example, with AM
radio waves, the carrier frequency is in the range 0.53–1.60 MHz, while the audio
information that modulates the carrier is in the range 20–20 000 Hz. A typical AM
wave is shown in Fig. 7.28.

In electronics, two questions are of interest: (1) how does one create an AM sine
wave and (2) how does one extract the information from (or demodulate) an AM
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Figure 7.28 An amplitude modulated sine wave.
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Rectify Filter

Figure 7.29 Demodulating a low frequency AM wave.

sine wave? The answers depend on the frequency of the carrier wave. Here we will
give examples for relatively low frequency signals (e.g., radio waves) and for high
frequency signals (light waves).

7.4.2.1 Low frequency AM
The process of demodulating a low frequency AM wave is fairly straightforward
and is shown schematically in Fig. 7.29. The received signal is first rectified so that
the modulated signal is always positive. Rectification is followed by a low-pass
filter that smooths the signal out, thus leaving the modulation. The process is not
unlike that used when creating a power supply, but here special “fast response”
diodes are used. The modulation signal can then be capacitively coupled to an
amplifier stage and the information it carries extracted.

The process of creating the AM signal is more complicated. A signal like that
shown in Fig. 7.28 is produced by the function

V = V1(1 + m sin ωmt) sin ωct (7.36)

where ωc is the carrier frequency, ωm is the modulation frequency, and m ≤ 1 is
the modulation index. Using some trig identities, Eq. (7.36) can be written as

V = V1

[
sin ωct + m

2
cos (ωc − ωm)t − m

2
cos (ωc + ωm)t

]
. (7.37)

From this form we can see that our AM sine wave consists of cosine waves at three
different frequencies: ωc, ωc + ωm, and ωc − ωm. We could thus, in principle,
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V1 sin ω1t V2 sin ω2t

V1 sin ω1t + V2 sin ω2t + (V1 sin ω1t + V2 sin ω2t)2 + · · · Figure 7.30 The symbol and functioning
of a mixer.

produce our AM sine wave by adding together three signals at these frequencies.
In most cases, however, a device known as a mixer is used. A mixer is a device
with two inputs which gives an output which is proportional to the sum of the
original two signals plus the square of the sum of the two signals.5 This is shown
schematically in Fig. 7.30.

Again using a series of trig identities, we can rewrite the squared term in the
mixer output as follows:

f = (V1 sin ω1t + V2 sin ω2t)2

= V 2
1 sin2 ω1t + V 2

2 sin2 ω2t + 2V1V2 sin ω1t sin ω2t

= V 2
1 (1 − cos2 ω1t) + V 2

2 (1 − cos2 ω2t)

+ V1V2 [cos (ω1 − ω2)t − cos (ω1 + ω2)t]

= V 2
1

[
1 − 1

2
(1 + cos 2ω1t)

]
+ V 2

2

[
1 − 1

2
(1 + cos 2ω2t)

]

+ V1V2 [cos (ω1 − ω2)t − cos (ω1 + ω2)t] (7.38)

all of which is added to the original signals. The point of this complicated mess is
that this last expression includes terms that involve the sum and difference of our
two input frequencies. If we filter out the frequencies we do not want (ω2, 2ω1,
and 2ω2), we are left with

V = V1 sin ω1t + V1V2 [cos (ω1 − ω2)t − cos (ω1 + ω2)t] (7.39)

which is the same form as Eq. (7.37). Thus a mixer allows us to take two sine
waves and produce an amplitude modulated wave.

7.4.2.2 High frequency AM
One can also transmit AM signals via light waves and detect these waves using
solid-state detectors. An example of such a system is shown in Figs. 7.31 and

5 Note that this is not the same device as the audio mixers often used in musical productions.
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Figure 7.31 AM lightwave transmitter.
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Vcc

Figure 7.32 AM lightwave receiver.

7.32. The carrier wave in this case is the red light from the LED and the amplitude
modulation is the variation of the light intensity. The transmitter uses a transistor
circuit to maintain DC current through an LED. This current (and, thus, the LED
light intensity) is then modulated by adding an AC component to the base current. In
this case, the AC component is simply the audio output of a microphone, amplified
by the op-amp portion of the circuit.

The receiver portion of this system (see Fig. 7.32) uses a photo-transistor. The
photo-transistor is an example of a light sensitive device; other such devices include
the photo-diode and the solar cell. These devices work by absorbing photons which
then promote electrons into the conduction band. If this promotion takes place in the
base portion of a transistor, these electrons can take the place of emitter electrons
that have recombined with holes, thus increasing the collector current. In our circuit
we focus the transmitted light on the photo-transistor and then amplify the resulting
collector modulations and directly receive the transmitted audio signal. There is no
need for a mixer or rectification/filtering in this system.
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Figure 7.33 A frequency modulated sine wave.

7.4.3 Frequency modulation

A second way to transmit information in an EM wave is through frequency modu-
lation (FM). In this technique, the amplitude of the wave is kept constant, but the
frequency of the wave varies with time. A typical FM wave is shown in Fig. 7.33.
Such frequency modulation can be represented by an equation of the form

V = V0 cos [ω1 − ω2(t)]t (7.40)

where ω1 is the carrier wave frequency and ω2 is a time-varying frequency that
contains the information to be transmitted (e.g., the audio of an FM radio wave).

A mixer is used both to produce and to demodulate the FM signal. We have
seen in Eq. (7.38) that if we mix two signal of frequencies ω1 and ω2, we obtain
several output frequencies, including ω1 − ω2. We thus select this frequency using
a band-pass filter that is narrow enough to reject all the other frequencies. This
frequency is then transmitted and received at a remote location. At this location, the
received signal at frequency ω1 −ω2 is mixed with another signal of frequency ω1.
Again, the mixer output has several frequencies, including one that is the difference
between the two input frequencies: ω1 − (ω1 − ω2) or ω2. We again filter out all
the frequencies except ω2 and our original information signal is recovered.
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EXERCISES

1. Explain the operation of the circuit in Fig. 7.34. Include a description of its
output waveform, including its amplitude and period.

−
+ A

0.1 μF

Vout

100 k�

470 �

−12 V

10 V
−
+ B

1 k�

+12 V

5.1 V

1 k�

Figure 7.34 Circuit for Problem 1.

2. Derive the expression ton = (R1 + R2)C ln 2 for the 555 astable oscillator.
3. Design a system, using the 555 timer, that will turn your lights on for four hours

each day while you are away on vacation. Assume that a high logic level will
be used to turn the lights on.

4. Design a timing circuit for a home security system that will activate the system
30 seconds after you push a button (giving you time to leave the house) and
then de-activate 8.5 hours later (right before you arrive home). Assume that a
low logic level activates the system.

5. Consider the relaxation oscillator of Fig. 7.35. Derive an expression for the
period of this oscillator in terms of R, C, Vin, V+

sat, and V−
sat. Hint: compare this

−
+

Vout

C R

20 k�

10 k�10 k�
Vin

Figure 7.35 Circuit for Problem 5.
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circuit with that of Section 6.5; start your analysis by finding an expression for
the voltage at the (+) input of the op-amp in terms of Vin and Vout.

6. Suppose you take the 555 astable oscillator circuit and place a constant voltage
Vcon on the Control input. Find expressions for ton and toff for this new circuit.

7. Consider the feedback network shown in Fig. 7.36.

C R
C VoutRVin

Figure 7.36 Circuit for Problem 7.

(a) At what frequency ω will the network give a real value for the feedback
ratio β?

(b) Which transistor amplifier configuration could be used with this network to
make an oscillator circuit?

(c) What voltage gain a would be required for this circuit?

FURTHER READING

Irving M. Gottlieb, Understanding Oscillators (Indianapolis, IN: Sams, 1971).
Richard J. Higgins, Electronics with Digital and Analog Integrated Circuits (Englewood

Cliffs, NJ: Prentice-Hall, 1983).
Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd edition (New York:

Cambridge University Press, 1989).
Walter G. Jung, IC Timer Cookbook (Indianapolis, IN: Sams, 1978).



8 Digital circuits and devices

8.1 Introduction

In analog electronics, voltage is a continuous variable. This is useful because
most physical quantities we encounter are continuous: sound levels, light intensity,
temperature, pressure, etc.1 Digital electronics, in contrast, is characterized by only
two distinguishable voltages. These two states are called by various names: on/off,
true/false, high/low, and 1/0. In practice, these two states are defined by the circuit
voltage being above or below a certain value. For example, in TTL logic circuits,
a high state corresponds to a voltage above 2.0 V, while a low state is defined as a
voltage below 0.8 V.2

The virtue of this system is illustrated in Fig. 8.1. We plot the voltage level
versus time for some electronic signal. If this was part of an analog circuit, we
would say that the voltage was averaging about 3 V, but that it had, roughly, a 20%
noise level, rather large for most applications and thus unacceptable. For a TTL
digital circuit, however, this signal is always above 2.0 V and is thus always in
the high state. There is no uncertainty about the digital state of this voltage, so the
digital signal has zero noise. This is the primary advantage of digital electronics: it
is relatively immune to the noise that is ubiquitous in electronic circuits. Of course,
if the fluctuations in Fig. 8.1 became so large that the voltage dipped below 2.0 V,
then even a digital circuit would have problems.

8.2 Binary numbers

Although digital circuits have excellent noise immunity, they also are limited to
producing only two levels. This does not appear to be very helpful in representing
the continuous signals we so frequently encounter. The solution starts with the

1 This holds for most macroscopic quantities. On the atomic level, many physical quantities are quantized.
2 If the voltage is between these thresholds, we say the state is undetermined, which means the circuit

behavior cannot be insured.
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Table 8.1 The first twelve counting numbers in binary

Base 10 Base 2 Base 10 Base 2

0 0 6 110
1 1 7 111
2 10 8 1000
3 11 9 1001
4 100 10 1010
5 101 11 1011

V

2
0 t

Figure 8.1 A noisy analog signal is
noise-free in digital.

realization that we can represent a signal level by a number that only uses two
digits. For these binary numbers, the two digits used are 0 and 1. Binary numbers
are also call base 2 numbers, and can be understood by abstracting the rules we
all know for the numbers we commonly use (base 10 numbers). When we write
down a base 10 number, each digit can have 10 possible values, 0 to 9, and each
digit corresponds to 10 raised to a power. For example, when I write 102410, this
is equal to

102410 = 1 × 103 + 0 × 102 + 2 × 101 + 4 × 100 (8.1)

where we use the subscript 10 on 1024 to make explicit the base of the number.
Analogously, for binary numbers, each digit can have only 2 possible values, 0

or 1, and each digit of the number corresponds to 2 raised to a power. Thus

101102 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 2210. (8.2)

The first twelve base 10 numbers and their binary equivalents are given in
Table 8.1.

In a similar manner, the rules for base 10 addition and subtraction can be mapped
over to binary arithmetic. Some examples are shown in Table 8.2. In base 10, when
we add the rightmost column, 9 plus 5 equals 14. Since this result cannot be
expressed in a single digit with the ten available digits (0 to 9), we write down the
4 and carry the 1 to the next column. Similarly, when we add the 1 and 1 of the
rightmost column of the binary number, we get 102. Since this cannot be expressed
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Table 8.2 Adding and subtracting in binary

Addition Subtraction

Base 10 Base 2 Base 10 Base 2

9 1001 14 1110
+15 +1111 −9 −1001

24 11000 5 101

in a single binary digit, we write down the 0 and carry the 1 to the next column.
We repeat the process as we work through the columns from right to left.

In the base 10 subtraction, we try to take 9 from 4, but need to borrow from the
next column to the left. This gives us 14 which allows the subtraction to proceed,
but we must remember to decrease the number in the 101 column by one. In like
manner, for the binary number, we try to take one from zero in the first column.
To progress, we need to borrow from the next column (the 21 column), carefully
decreasing that column’s digit by one. We then continue as with the base 10 number
until we reach the leftmost column.

Note from Eq. (8.2) and Tables 8.1 and 8.2 that binary numbers tend to be long
(i.e., have many digits) compared to base 10 numbers. As we will see, this has a
direct impact on the complexity of digital circuits.

8.3 Representing binary numbers in a circuit

In the last section we saw that numbers can be expressed in base 2 just as they
can in the more familiar base 10. Base 2 is particularly suitable for expressing a
number digitally since digital electronics has only two levels, high and low, and
these can be taken to represent the two digits (1 and 0) in a binary number. But
a binary number typically consists of several digits.3 How can we express all of
these digits electronically? There are two basic methods, known as parallel and
serial representation.

In parallel expression of a binary number, each digit or bit of the number is
represented simultaneously by a voltage in the circuit. This is represented schemat-
ically in Fig. 8.2. Each output line has a high or low voltage relative to ground.
These lines are assigned to represent a particular bit of the number. In this example,

3 A binary digit is often referred to as a bit.
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23 1

Digital

Circuit
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Figure 8.2 Parallel representation of a four-bit
number 1101.

V

t

bit: 20 21 22 23

Figure 8.3 Serial representation of a
four-bit number 1011.

the bottom line represents the 20 bit, the next line up represents the 21 bit, and
so on. Because we have four independent lines, the entire four-bit number can be
expressed at a point in time, so parallel communication of information is very fast.
The price we pay for this speed is the increased number of lines in our circuit. The
more precision we want in our number, the more significant figures we need, and
the more lines are required.

An alternative way of expressing a binary number is by a serial representation.
In this method, the various bits are communicated by sending a time sequence of
high/low voltage levels on a single line. An example of this is shown in Fig. 8.3.
The plot shows the voltage level on a serial line. The voltage switches between
high and low levels, with each level lasting for a certain time interval. The first
interval corresponds to the 20 bit of our number, the next interval represents the
21 bit, and so on. We are thus able to communicate the binary number on a single
line, rather than the multiple lines required for parallel communications, but the
communication is no longer instantaneous; we must wait for several intervals
before we receive all the bits of our transmitted number.

In order for serial transmission of information to work, both the sender and
receiver need to agree about several things. Some of these are: (1) how many bits
of data are going to be sent, (2) what digital level (high or low) corresponds to
the 1 bit, (3) what is the time interval between bits, and (4) how will the start of a
number be recognized?
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8.4 Logic gates

The basic circuit element for manipulating digital signals is the logic gate. There
are several types of logic gate, and each performs a particular logical operation
on the input signals. The logical operation of the gate is defined by its truth table
which gives the output state for all possible combinations of the inputs.

The first logic gate we will consider is the AND gate. The output of an AND
gate is high only when all of the inputs are high. Because this definition is clear
for any number of inputs, this type of gate can, in principle, have as many inputs
as you like. In Fig. 8.4 we show a two-input AND gate along with its truth table.
As we will see below, there is a special algebra, called Boolean algebra, for logic
operations. The symbolic representation of the AND operation for two inputs A
and B is A · B, pronounced “A and B” or “A ANDed with B.” Note that it is not “A
times B.”

The output of an OR gate is high when any input is high. Again, this operation is
defined for any number of inputs. A two-input OR gate is shown in Fig. 8.5 along
with its truth table and logical expression A + B. A + B is pronounced “A or B” or
“A ORed with B.” It is not “A plus B.”

A third gate is called the exclusive-OR gate, or simply the XOR gate. The logic
here is that the output will be high when either input is high, but not when both
inputs are high. Note that this definition assumes there are only two inputs. This
device is shown in Fig. 8.6. The circuit symbol is like the OR gate symbol; the
curved line across the inputs denotes the exclusion described in the definition. The
circle around the + in the Boolean expression A ⊕ B distinguishes this expression
from the OR function. This is pronounced “A x or B.”

Out ≡ A · BA
B

A B Out
0 0 0
1 0 0
0 1 0
1 1 1

Figure 8.4 Circuit symbol, algebraic
expression, and truth table for the
AND gate.

Out ≡ A + BA
B

A B Out
0 0 0
1 0 1
0 1 1
1 1 1

Figure 8.5 Circuit symbol, algebraic
expression, and truth table for the OR
gate.
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Out ≡ A ⊕ BA
B

A B Out
0 0 0
1 0 1
0 1 1
1 1 0

Figure 8.6 Circuit symbol, algebraic
expression, and truth table for the
XOR gate.

Out ≡ AA
A Out
0 0
1 1

Figure 8.7 Circuit symbol, algebraic
expression, and truth table for the
buffer gate.

Out ≡ A · BA
B

A B Out
0 0 1
1 0 1
0 1 1
1 1 0

Figure 8.8 Circuit symbol, algebraic
expression, and truth table for the
NAND gate.

Out ≡ A + BA
B

A B Out
0 0 1
1 0 0
0 1 0
1 1 0

Figure 8.9 Circuit symbol, algebraic
expression, and truth table for the
NOR gate.

The buffer gate, shown in Fig. 8.7, seems to be superfluous. It has only one
input, and the output is the same as the input. What good is this? This gate is
used to regenerate logic signals. A logical high signal may start out at 5 V, say,
but after being transmitted on conductors with non-zero resistance or after driving
several other logic gates, the voltage level may fall and become perilously close
to the defining threshold for a high logic level. The buffer is then used to boost
the level up to a healthier level, thus maintaining the desirable noise immunity and
extending the range for the transmission of the signal.

Each of the gates discussed so far has a corresponding negated version: the
AND, OR, XOR, and buffer gates have the NAND, NOR, XNOR, and inverter
gates as complements. The truth tables for these negated gates are the same as
for the original gates except the output states are reversed. Thus the output states
0,0,0,1 for the AND gate become 1,1,1,0. The circuit symbol is the same except
for a small circle on the output which indicates the inversion of the level. Finally,
the Boolean symbol is changed by placing a bar over the original expression: thus
A · B becomes A · B, and so on. These negated gates are shown in Figs. 8.8, 8.9,
8.10, and 8.11.
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Out ≡ A ⊕ BA
B

A B Out
0 0 1
1 0 0
0 1 0
1 1 1

Figure 8.10 Circuit symbol,
algebraic expression, and truth
table for the XNOR gate.

Out ≡ AA
A Out
0 1
1 0

Figure 8.11 Circuit symbol,
algebraic expression, and truth
table for the inverter gate.

L
R Out = (L + R) · SS Figure 8.12 Solution of the car alarm problem.

8.5 Implementing logical functions

The implementation of simple logical functions can usually be determined after
a little thought. For example, suppose you are designing a safety system for a
two-door car. You want to sound an alarm (activated by a high level) when either
door is ajar (this condition being indicated by a high logic level), but only if the
driver is seated (again, indicated by a high level). Such a logic function is produced
by the circuit in Fig. 8.12. The state of the left and right doors is represented by
inputs L and R, while input S tells the circuit if the driver is seated. Thus if L or R is
high (or both), and S is high, the output is high and the alarm sounds, as required.

With more complicated logic problems, the solution is less obvious. For such
problems the Karnaugh map provides a method of solution. This method works for
logic circuits having either three or four inputs. The first step in the method is to
make a truth table for the problem. This follows from analyzing the requirements
of our problem: under what conditions do we require a high output? As an example,
suppose our analysis gives us the truth table shown in Fig. 8.13. For this example,
we have three inputs, A, B, and C giving the output levels indicated.

The next step is to construct a Karnaugh map from the data in our truth table.
This is illustrated in Fig. 8.14. The input states are listed along the top and left
side of the map. For this example, with three inputs, we list the possible AB
combinations along the top and the two C states along the left side.4 When we

4 For four inputs, the possible CD combinations would be listed along the left side as in Fig. 8.16.
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A B C Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
Figure 8.13 Truth table for the Karnaugh map example.

AB
C

1

0

00 01 11 10

0 0 0 0

0 1 1 1
B · C A · C Figure 8.14 The Karnaugh map corresponding to Fig. 8.13.

list the AB combinations, we must follow a convention: only one digit at a time
is changed as we write down the various combinations. In this example, we start
(arbitrarily) with 00, and then change the second digit to get 01. To get another
combination not yet listed, we change the first digit and get 11, and finally change
the second digit obtaining 10. We then fill in the map with the data from the truth
table.

The final steps are to identify groups of ones and then read the required logic
from the map. The rule is to look for horizontal and/or vertical groups of 2, 4, 8,
or 16. Diagonal groups are not allowed. In our example, there are two groups each
containing two members. These are circled in Fig. 8.14. Now we identify the logic
describing each group. To be a member of the group on the left, both B and C must
be high, so the logic is B · C. To be in the group on the right, both A and C must
be high, so the logic is A · C. Since a high output is obtained if we are a member
of either group, the full logic describing our truth table is (B · C) + (A · C). The
implementation of this is shown in Fig. 8.15.
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A
C

B

Out = (B · C) + (A · C)

Figure 8.15 The logic circuit
implementation of Fig. 8.13.

AB
CD

10

11

01

00

00 01 11 10

0 0 0 0

0 0 0 0

1 0 0 1

1 0 0 1 Figure 8.16 A Karnaugh map example showing how edges
connect.

B
C Out = C · B Figure 8.17 Circuit for the negated version of Fig. 8.16.

When looking for groups in the Karnaugh map, the edges of the map connect.
This is illustrated in the map shown in Fig. 8.16. Because we can connect the right
and left edges of the map, the ones in this map form a group of four, as indicated.
To be a member of this group, C must be high and B must be low. Thus the logic for
this group is C · B. This is much simpler logic than we would obtain if we instead
identified two groups of two in our map.

Another simplification results in cases where the map has many ones and few
zeros. In such cases, we can identify groups of zeros, find the logic for being a
member of these groups, and apply an inversion to the result. For example, if the
ones and zeros of the central portion of the map in Fig. 8.16 were reversed, we
would find one group of four zeros. As we have seen, the logic for this group is
C · B, but now we invert the result, obtaining C · B. This final inversion could be
done by using a NAND gate, as shown in Fig. 8.17

8.6 Boolean algebra

An algebra is a statement of rules for manipulating members of a set. You have,
no doubt, learned in the past rules for doing mathematical manipulations with
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Table 8.3 The Boolean algebra

Defining OR 0 + A = A
1 + A = 1
A + A = A
A + A = 1

Defining AND 0 · A = 0
1 · A = A
A · A = A
A · A = 0

Defining NOT A = A
Commutation A + B = B + A

A · B = B · A

Association A + (B + C) = (A + B) + C
A · (B · C) = (A · B) · C

Distribution A · (B + C) = (A · B) + (A · C)

A + (B · C) = (A + B) · (A + C)

Absorption A + (A · B) = A
A · (A + B) = A

DeMorgan’s 1 A + B = A · B

DeMorgan’s 2 A · B = A + B

integers, real numbers, and complex numbers. There is also a special algebra for
logical operations. It is called Boolean algebra.

The rules for Boolean algebra are shown in Table 8.3. They consist of definitions
for the AND, OR, and NOT (or inversion) operations, and several theorems. In the
table, A, B, and C are logical variables that can have values of 0 or 1. Once the
definitions are accepted, the theorems can be proved by brute force by plugging in
all the possible cases; since the variables have only two values, this is not too trying.

Boolean algebra can be used to find alternative ways of expressing a logical
function. Consider the XOR function defined in Fig. 8.6. To get a high output,
this function requires either A high while B is low, or B high while A is low. In
algebraic terms,

A ⊕ B = (A · B) + (B · A). (8.3)

This equation shows us a way of producing the exclusive-OR function (other than
buying an XOR gate). The resulting circuit is shown in Fig. 8.18. Note that in this
figure (as in other figures in this chapter) we use the convention that crossing lines
are not connected unless a dot is shown at the intersection point. This allows for
more compact circuit drawings.
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A

B

Out

Figure 8.18 An alternative way of making an
XOR gate.

A
B

Out

Figure 8.19 Another way of making an XOR
gate.

Now we employ some algebraic manipulations to find another (and simpler)
way to express the XOR function. In the first line of Eq. (8.4), we use the fact
that A · A = 0 and 0 + A = A (for any A) to rewrite Eq. (8.3). The next line uses
the Distribution Theorem to group terms together. The third line uses the second
DeMorgan Theorem and the last line again uses the Distribution Theorem. The
resulting logic is implemented in Fig. 8.19. Note that this way of making an XOR
gate is simpler than that in Fig. 8.18 because it uses fewer gates:

A ⊕ B = (A · B) + (B · A) + (A · A) + (B · B)

= A · (A + B) + B · (A + B)

= A · (A · B) + B · (A · B)

= (A + B) · (A · B). (8.4)

We have seen that we can construct an XOR gate from combinations of other
gates. There is an interesting theorem that states that any logic function can be
constructed from NOR gates alone, or from NAND gates alone. For example,
suppose we want to make an AND gate from NOR gates. Using Boolean algebra,
we can find the way:

A · B = (A + B) = (A + 0) + (B + 0). (8.5)

In the first equality, we have used the second DeMorgan Theorem and in the second
equality we have used the fact that anything OR’d with 0 remains the same. The
point is that the final expression is all in terms of NOR functions. The resulting
circuit is shown in Fig. 8.20.
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A
0

B
0

Out

Figure 8.20 Making an AND gate from NORs.

It may seem that this is a silly thing to do. If you need an AND, why not just
buy an AND instead of making it from NORs? There are two reasons. The first
concerns the way logic gates are packaged. A typical integrated circuit (IC) chip
will have four or six gates on a single chip, but all the gates are the same type (e.g.,
all NORs). Now if you are building a logic circuit that needs one NOR gate and
one AND gate, you can buy two integrated circuits (one with NOR gates on it and
one with AND gates on it) or you can use a single NOR gate IC containing at least
four gates. In the latter case, one of the gates is used for the NOR function and the
other three are used, as in Fig. 8.20, to produce the AND function. Thus you have
saved money and circuit board space by using the NOR equivalent for the AND.

The second reason is, again, a practical one. If one is working on a logic circuit
and runs out of one type of gate, is it useful to know that you can make do with
a combination of NOR or NAND gates. Alternatively, if you are stocking an
electronic workshop, you could just buy NOR or NAND gates instead of stocking
all the different logic gates; you could always construct a needed function from the
one type of gate you had on hand.

8.7 Making logic gates

Although we have discussed how logic gates function, we have not yet indicated
how to make them. There are, in fact, many ways to make logic gates. A simple,
low-tech way is to use an electromagnetic switch or relay, as shown in Fig. 8.21.
The relay has a solenoid with a movable iron core that is mechanically attached to
a switch. When a voltage is applied to the control input, the iron core is pulled into
the solenoid and closes the switch. Without a control voltage, a spring (not shown)
returns the switch to an open position.

Figures 8.22 and 8.23 show the use of relays to form an AND gate and an OR
gate. The gate inputs A and B are connected to the relay controls and close the
relevant switch when they are high. For the AND gate, two relays are connected in
series, and for the OR gate, two relays are connected in parallel. When the switches
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Control

In
Out

Figure 8.21 A basic relay.

A

+5 V

B
Out = A · B

Figure 8.22 AND gate made from relays.

A
+5 V

B

Out = A + B

Figure 8.23 OR gate made
from relays.

are open, the output is held at ground potential by the resistor R. When the logic is
satisfied, the output is connected to the +5 V supply voltage and is thus high.

Semiconductor logic gates come in various types or families. One common type
is the transistor-transistor logic (or TTL) family. Here bipolar transistors are used
to create the logic gates. For example, the TTL NOR gate is shown in Fig. 8.24. If
either A nor B is high, its transistor is driven into saturation, making the collector-
emitter voltage small and the gate output low. If neither A nor B is high, both
transistors are off, so there is no voltage drop across R and the output is high
(+5 V).

Another important logic family is the complementary metal oxide semiconductor
(or CMOS) family. These circuits employ field-effect transistors. For example, a
CMOS NOT gate is shown in Fig. 8.25. When a high voltage is applied to the input
A, the transistor turns on and the voltage across it becomes small, thus giving a
low output. When a low voltage is applied, the transistor does not conduct, so the
output remains at +5 V (i.e., high).
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Table 8.4 Characteristics of some logic families

Family Pros Cons

TTL Common, fast, cheap High power consumption
CMOS Low power consumption, Relatively slow

suitable for large scale integration
ECL Fastest High power consumption,

low noise immunity

B

A

Out = A + B

+5 V

Figure 8.24 A TTL NOR gate made with
bipolar transistors.

A

A

+5 V

Figure 8.25 A CMOS NOT gate made with a field-effect transistor.

There are also special purpose logic families, like the fast-switching ECL (emitter
coupled logic) family, but we will leave these for more advanced study. Some of
the pros and cons of the families we have mentioned are shown in Table 8.4.

8.8 Adders

In addition to performing logic functions, gates can also be used to add binary
numbers. To see this, consider the data in Table 8.5. We imagine that A and B are
two binary numbers consisting of one bit, so each can only have the value 0 or 1.
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Table 8.5 Adding two one-bit binary
numbers

A B Sum C S

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 10 1 0

A
B S

C
Figure 8.26 A half-adder made from an AND gate and an OR gate.

Our table shows the four possible combinations for A and B and their sum. Note
that the last entry (1 + 1 = 10) requires two bits for the sum. We separate these
two bits in the columns C and S.

If we think of columns C and S as outputs for a logic circuit having inputs A and
B, we see that C is provided by the AND logic and S is given by XOR logic. We
can thus perform this one-bit addition with the circuit of Fig. 8.26. This circuit is
called a half-adder, which we will abbreviate HA. S stands for sum and C stands
for carry.

Adding one-bit binary numbers is nice, but usually our arithmetic needs will
involve longer binary numbers. Perhaps we can use a series of n half-adders to
add an n-bit binary number. Unfortunately, this does not work. If we review the
binary addition example in Table 8.2, we see that each column of the addition
requires three possible inputs: one from each number and one to accommodate the
possibility of a carry from the sum of the digits to the right. The half-adder outputs
a sum and a carry but has no provision for a carry input.

The solution to this problem, shown in Fig. 8.27, uses two half-adders and an
OR gate. This new circuit is called a full adder (FA). The full adder has three
inputs, thus allowing for a carry input from the result of a previous addition. The
output has a carry and a sum, just as for the half-adder. The reader can verify the
proper operation of this device by working through the logic for all possible input
combinations.
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CA
B

SC

C

S
C

S

HA
HA

Figure 8.27 A full-adder made from two
half-adders and an OR gate.

A1
B1 S1

Cout1

0

FA

A2
B2 S2

Cout2FA

A4
B4 S4

Cout4FA

Figure 8.28 Several full-adders are used to sum the digits of two binary
numbers.

S1 S2 S4 S8

A1 A2 A4 A8 B1 B2 B4 B8

Cin Cout7483

Figure 8.29 The four-bit full-adder IC.

The use of full adders to add two four-bit binary numbers is illustrated in Fig. 8.28.
We imagine that our first number has digits A1, A2, A4, and A8, and that our second
number has digits B1, B2, B4, and B8 (the subscripts are 2n). In our circuit, each of
these digits is represented by a logic level on a separate line. These are connected
to a series of full adders as shown, with the carry out of one full adder connected to
the carry in of the next. The carry input of the first full adder is not used and is thus
connected to a low level. The sum output of each adder becomes a digit (S1, S2, S4,
and S8) of the resulting sum, with the carry out from the last full adder giving S16.

A four-bit full adder is available as an integrated circuit, shown schematically in
Fig. 8.29. It has inputs for the four bits of A and B and outputs the four bits of S as
well as a possible additional bit (the carry out). The carry in connection allows for
the connection of multiple units when adding a number with more than four bits.

It is worth noting at this point how the complexity of our circuit has multiplied.
Each half-adder uses two gates, so a full-adder has five gates, and the four-bit adder
has twenty gates. Yet the usage rules for the four-bit adder are relatively simple. This
is characteristic of digital circuitry: we build functionality by combining smaller
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Q

Q

S

R Figure 8.30 The basic flip-flop.

units. In the end, even the most complex digital circuit is built from humble
logic gates.

8.9 Information registers

The output of the digital devices we have studied so far always reflects the current
state of the inputs: change the inputs and the output changes. There is no memory
of former input states. For many applications we would like to retain information
about previous input states. This is done with information registers.

8.9.1 The basic or R-S flip-flop

The simplest information register is shown in Fig. 8.30. It is called by various
names: the basic flip-flop, binary, or the R-S flip-flop (RSFF). The circuit has
inputs S and R (which stand for Set and Reset) and outputs labeled Q and Q. We
emphasize that Q and Q are just labels. In most cases these will be in opposite logic
states, but not always.

To see how this circuit functions, suppose that both S and R are high. What
will be the state of Q and Q? Because of the feedback between the outputs and
the NAND gate inputs, we have to look for states that are self-consistent (i.e., that
satisfy the logic of the entire circuit). Suppose, for example, that we assume Q = 1
and Q = 0. If we follow the circuit, putting Q = 1 into the bottom NAND gate
along with R = 1, we get a zero output, which is consistent with our assumption of
Q = 0. Putting Q = 0 into the top gate along with S = 1 gives a output of 1, which
is consistent with our assumption for Q. Thus the output state Q, Q = 1, 0 satisfies
the logic of the circuit. The reader can verify that the state Q, Q = 0, 1 also satisfies
the logic of the circuit, while Q, Q = 0, 0 and 1,1 do not. Thus this circuit has two
stable output states, or is bistable.
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Table 8.6 Response of the basic flip-flop to changes
in inputs

Case Time R S Q Q

1 Start 1 1 0 1
End 1 0 1 0

2 Start 1 1 1 0
End 1 0 1 0

3 Start 1 1 1 0
End 0 1 0 1

4 Start 1 1 0 1
End 0 1 0 1

The point of the circuit is that we can choose which of these two states the circuit
will be in by making either R or S momentarily zero. The four possible cases are
summarized in Table 8.6. For each case we start with both R and S high and Q and
Q in one of the two stable states. Then we examine what happens when we make R
or S low. In case 1, we see that if Q, Q = 0, 1 initially, then making S low changes
the outputs to Q, Q = 1, 0. Case 2 shows that if Q, Q = 1, 0 initially, then making
S low has no effect. Similarly, cases 3 and 4 show that making R low leaves the
outputs in the state Q, Q = 0, 1 regardless of the initial state.

We can summarize these results by saying that the current output state tells us
which input was low last. If S was low last, then the output state will be Q, Q = 1, 0.
If R was low last, the output state will be Q, Q = 0, 1. In shorthand, changes are
governed by

(R, S) → (Q, Q) (8.6)

assuming only one of the inputs is low.5

8.9.2 The clocked flip-flop

While the basic flip-flop remembers which input was low last, this memory is
limited; the next time R or S changes, the former result is lost. This is the motivation
for our next circuit, shown in Fig. 8.31. This circuit is called the clocked or gated
R-S flip-flop. The right part of the circuit is the basic flip-flop we studied in the

5 If both R and S are low, the outputs become Q, Q = 1, 1. But when R and S are returned to their normal
high state, this output cannot remain since it is not a stable state. The output falls into one of the stable
states, but we cannot predict which one.
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Figure 8.31 The clocked flip-flop.

last section; recall that this requires a low input to change states. The inputs to this
basic flip-flop come from the NAND gates on the left.

The truth table for a NAND gate tells us that it will only have a low output if
both inputs are high. Our clocked flip-flop thus works as follows: we imagine that
R and S are normally low and that occasionally one of them becomes high. If the
clock input C is also high, the corresponding NAND gate can output a low and
thus change Q and Q. If C is low, however, changes to R and S have no effect on
Q and Q. In shorthand, changes are governed by

(S, R) → (Q, Q) (8.7)

but only if C is high and assuming only one of the inputs S, R is high.
Our “clock” input C thus provides a degree of isolation between the inputs S and

R and the outputs Q and Q. The input information is only “read” and “saved” in the
output state when C is high. Our memory is now more selective and permanent:
we only store input information when C is high and we can keep that information
expressed on the outputs as long as C is low.

8.9.3 The M-S flip-flop

The clocked flip-flop of the last section isolates changes in the inputs from changes
in the outputs through the use of the clock input. The output can change only when
C is high. If, however, there are multiple changes in the levels of the inputs S and
R during the time C is high, the outputs will also change multiple times. We would
like to take the process of isolating input changes from output changes one step
further so that the state of the inputs S and R at one instant of time will be read and
saved.

We can accomplish this using the circuit shown in Fig. 8.32. Two clocked flip-
flops (CFF) are used along with a NOT gate to form the master-slave or M-S
flip-flop (MSFF). When C is low, changes in the inputs S and R will not affect the
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Figure 8.32 The M-S flip-flop.

outputs of the master flip-flop Q ′ and Q′. The clock input C′ of the slave flip-flop,
however, is high, and its inputs S′ and R′ are directly connected to Q ′ and Q′. Thus
the current state of Q ′ and Q′ is reflected in the final outputs Q and Q.

When C is high, changes in S and R are reflected in the master outputs Q ′ and
Q′, but since C′ is low, these do not change the final outputs Q and Q. When C
changes from high to low, the state of S and R at that instant will also be present
at the input of the second flip-flop, and this input will be read as C′ changes from
low to high. We have thus created a circuit that reads and stores the input states S
and R only at the high-low transition of the clock input C. This is called negative
transition edge clocking. Again, in shorthand, changes are governed by

(S, R) → (Q, Q) (8.8)

but only at the high-low transition of C and assuming only one of the inputs S,R is
high.

8.9.4 Other flip-flop variations

There are other variations in flip-flop construction and operation that should be
noted. The clocked flip-flop and M-S flip-flop can also be constructed from NOR
gates rather than NANDs. The result is a CFF that changes when the clock is low
rather than high, and an MSFF that changes on the low-high transition of the clock
rather than the high-low transition.

The simple summaries of our flip-flop operations given by Eqs. (8.6), (8.7),
and (8.8) are accompanied by assumptions about the logic levels on the S and R
inputs. If both inputs are high for the CFF or MSFF (or both low for the RSFF),
the output state becomes unpredictable when the inputs return to their normal state.
One way to deal with this problem is to add feedback lines from the outputs Q and
Q to the inputs. A clocked flip-flop with this modification is shown in Fig. 8.33.
Following common usage, the S and R inputs are renamed J and K, respectively,
and the circuit is called a clocked J-K flip-flop. The reader can verify that this circuit
follows the rules of the clocked RSFF with the following change. If both J and K
are high when the clock goes high, the outputs switch (or toggle) from whichever
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Figure 8.33 The J-K modification
of the clocked flip-flop.

state they were in to the opposite state. Thus, Q, Q = (1, 0) becomes (0, 1) and
vice versa. Similarly, a J-K version of the MSFF can be constructed.

Finally, we note that direct set and reset (or clear) inputs are often added to
flip-flops. These provide an additional way to change the outputs that usually
overrides the other rules of operation. Thus, a prescribed logic level (this might
be high or low depending on the device details) applied to the direct set input will
immediately produce Q, Q = (1, 0) regardless of what the clock and other inputs
are doing. Conversely, when the prescribed level is applied to the direct reset input,
Q, Q = (0, 1) is immediately produced.

8.10 Counters

We have seen that flip-flops can be used to store information about the logic levels
of their inputs. They are also used to produce other useful functions. One example
of this is shown in Fig. 8.34 where the outputs of an MS flip-flop are connected
to the inputs. The result is a toggle flip-flop (TFF). To see how this works, we
imagine that the clock input C is regularly switching states, as shown in Fig. 8.35.
The outputs Q and Q will be in opposite states, and we suppose they start out as
Q, Q = (0, 1). The outputs will change to reflect the input states at the high-low
transition of the clock C, in accordance to Eq. (8.8). Since Q is connected to S
in our circuit, the state of Q at the transition will end up at Q. Similarly, the state
of Q at the transition will end up at Q. The (Q, Q) states thus switch or toggle at
the negative transition edge of C. If the clock waveform is a square wave as in
Fig. 8.35, then Q and Q are also square waves, but with twice the period of C,
or half the frequency. Because of this latter interpretation, the toggle flip-flop is
sometimes called a divide-by-two.

If we connect several toggle flip-flops as shown in Fig. 8.36, we obtain a binary
counter. The output of the leftmost TFF is used as the clock for the next TFF, and
this connection strategy is repeated as we move to the right. The Q outputs are
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Figure 8.34 The toggle flip-flop.
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Figure 8.35 Typical waveforms for the
toggle flip-flop.
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Figure 8.36 Toggle flip-flops joined to form a binary counter.

not used. The output of each TFF changes state as its particular clock waveform
undergoes a high-low transition. The output waveforms for the first four TFFs are
shown in Fig. 8.37.

To see why this circuit acts as a counter, think of the outputs Q0, Q1, Q2, and
Q3 as the digits of a binary number Q3Q2Q1Q0 that gives the number of high-low
transitions in C. We start with all the outputs low, so the count is 00002. After the
first high-low transition, Q0 is high, so we have 00012, as shown by the leftmost
dotted line in Fig. 8.37. After seven high-low transitions, Q0, Q1, and Q2 are high
and our number is 01112, as shown by the next dotted line. One more transition
gives 10002, matching the eight transitions that have occurred (see third dotted
line). This process continues until the count reaches fifteen (11112). The next
transition gives 00002 and our counter has reset to its initial state (last dotted line).
Clearly, this can be extended to use any number n of toggle flip-flops, in which
case the counter will reset to zero after 2n clock transitions.
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Figure 8.37 Typical waveforms for
a binary counter.
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Figure 8.38 Schematic for the 7493 binary counter.

Counting circuits are available as integrated circuits. The functional schematic
for one such IC (the 7493) is shown in Fig. 8.38. For flexibility, one TFF is
independent, with its own clock input CP0. The other three TFFs are connected
internally as needed for a binary counter and are driven by CP1. To make a four-bit
counter, we simply connect Q0 to CP1.

This circuit has an additional useful feature. There are two master reset inputs
MR1 and MR2. When both of these inputs are high, the counter immediately
resets all outputs to zero. By connecting one or two of the outputs to these master
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Figure 8.39 A seven-segment display showing the segment labels a–g.

resets, we can force the counter to return to zero after reaching a certain count.
For example, if we connect Q2 and Q0 to MR1 and MR2, the first time these two
outputs are high (i.e, 01012), the counter will immediately return to zero. Thus the
count will go like this: 0000, 0001, 0010, 0011, 0100, 0000, etc. A counter that
returns to zero after n counts is called a modulo-n counter. Using this terminology,
in this example we have taken a modulo-16 counter and made it into a modulo-5
counter by employing the master resets. Since our usual base 10 number system
resets after 10 counts (0,1,2,...9,0,...), a modulo-10 counter is given a special name:
a binary-coded decimal or BCD counter.

8.11 Displays and decoders

The usual number displays in our world are decimal, using the digits zero through
nine. A common device used for such numbers is the seven-segment display,
shown in Fig. 8.39. The device has seven independent line segments (a through
g) which can be lit by applying a high level to the appropriate input. By lighting
the appropriate segments, a boxy version of each of the ten decimal digits can be
produced.

As we have seen, our counter circuits produce binary representations of numbers.
If we want to display these numbers using a seven-segment display, we need a circuit
that will take the four outputs of our BCD counter and light up the appropriate
segments of the display. Such a device is called a decoder, and a typical IC is
shown in Fig. 8.40. It has inputs for the BCD digits Q0, Q1, Q2, and Q3 and outputs
for each of the segments of the seven-segment display.
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Figure 8.40 The 7447 decoder IC.

S1
R1

Q1

A

Q1

S2

R2

Q2

B

Q2

S3

R3

Q3

C

Q3

S4

R4

Q4

D

Q4

clock

MSFF MSFF MSFF MSFF

Figure 8.41 Using MSFFs to make a shift register.

8.12 Shift registers

Another way to employ MS flip-flops is to join them together to form a shift
register, as shown in Fig. 8.41. In this case, all the flip-flops have a common clock
input which is typically a square wave as shown in Fig. 8.42. A series of high and
low levels is applied to S1 synchronized with the clock. Since the MSFF operation
follows Eq. (8.8), the level present at S1 at the high-to-low transition of the clock
will be transfered to Q1. At the next transition, this will be transfered to Q2, and so
on. The net effect is that the waveform sequence applied at S1 is transferred down
the line of flip-flops, one step for each negative transition edge of the clock. If we
wish to repeat the pattern, the output of the last flip-flop can be returned to the input
of the first.

8.12.1 Shift register applications

Shift registers have a number of applications and we mention two of them here.
The first is the production of a scrolling message sign of the type often seen in
public places. If we connect each of the outputs A, B, C..., of Fig. 8.41 to an LED
in a long row of LEDs, we would see our input pattern move down the row at a rate
set by the clock. If we do the same thing with a number of shift register/LED rows
and arrange the rows one under the other, we obtain a rectangular array of LEDs
controlled by the various flip-flops in the shift registers. We can now load any
pattern we choose into the array and propagate it down the line. Often this pattern
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Figure 8.42 Example waveforms for the shift register.

Figure 8.43 Scrolling message display.

is chosen to form the letters of a message as in Fig. 8.43. The word “HELLO”
would move one column to the right with each clock pulse.

We can also use multiple shift registers for digital waveform synthesis. For this
application we imagine we have m shift registers, each of which has n flip-flops
and thus can hold n logic levels. We use only the output of the last flip-flop of each
shift register. At any given time the logic levels of these m outputs form an m-bit
binary number B. Each time the clock pulses, a different number B appears on the
outputs, and, since each shift register has n flip-flops, we can produce n different
m-bit numbers. The output of the last flip-flop of each shift register is connected
to the input of the first flip-flop so that the pattern repeats. This setup is shown in
Fig. 8.44.

Now suppose we wish to create a periodic waveform. We divide the period of
the waveform into n equal divisions as shown in Fig. 8.45. An m-bit binary number
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n-bit register Bm Figure 8.44 A set of shift registers used

to make a waveform synthesizer.
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Figure 8.46 Synthesized wave (solid
line). The dotted line shows the waveform
after low-pass filter.

proportional to the amplitude of the waveform at each time is then loaded into
the shift register array. After all this information is loaded, we run the clock at
its normal rate. The circuit now gives a series of binary numbers B at the output
that represent the amplitude of the waveform at subsequent time steps. If we can
translate these numbers into an analog voltage (see Section 8.13), we can produce
a stepped version of the original waveform as in Fig. 8.46. This can then be passed
through a low-pass filter which will smooth it into a sine wave.

Although this method of producing waveforms seems more complicated than
using an analog circuit, it has certain advantages. The most striking is that we
can reproduce any periodic waveform with this method. Our analog circuits can
produce certain waveforms (sine, sawtooth, square waves), but would be hard
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pressed to make a more irregular pattern. Second, the frequency of our synthesized
waveform is easily changed by changing the clock rate. Lastly, the circuit design
is easily extended; we can improve the precision (in time or amplitude) of our
synthesized waveform by increasing the number of shift registers or the number of
flip-flops in each shift register.

8.13 Digital to analog converters

The last step in our digital waveform synthesizer is to take the series of binary
numbers B presented at the output of our array of shift registers and convert them
to analog voltages. This requires a device called a digital to analog converter (also
written as D/A converter or DAC). It has an input for each bit of the binary number
and outputs a voltage proportional to that number. There are various ways to do
this, but a simple one which uses our previous knowledge is shown in Fig. 8.47.
It uses the op-amp adder circuit developed in Section 6.3. Recall that this circuit
produces a weighted sum, with the weights set by the resistor values:

Vout = −
(

Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3 + Rf

R4
V4

)
. (8.9)

Since our input voltages come from a digital circuit, all high levels will be at the
same voltage and similarly for the low levels. If these represent the bits of a binary
number, however, we want the more significant bits to count more than those of
lesser significance. This can be achieved by weighting the sum. If we choose the
resistor values shown in Fig. 8.47, Eq. (8.9) reduces to

Vout = −(V1 + 2V2 + 4V3 + 8V4). (8.10)

V2
R2

5 k�

R1

10 k�
V1

R3

2.5 k�
V3

R4

1.25 k�
V4

−
+

Vout

Rf

10 k�

Figure 8.47 A four-bit digital to analog
converter.
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Thus, if we connect the 20 bit of our binary number to V1, the 21 bit to V2, the 22

bit to V3, and the the 24 bit to V4 we will get an output voltage that is proportional
to the binary input number. Clearly, this scheme can be extended to any number of
bits.

In most cases, a user will simply buy a D/A converter on a chip rather than build
one from components. In addition to our scaled resistor method, there are several
other ways to achieve digital to analog conversion, and the interested reader should
consult the end-of-chapter references for details. Here we briefly discuss some of
the issues common to all DACs.

The resolution of a D/A converter refers to the smallest change step at the output.
This is set by the number of input bits. For an n-bit input, the resolution is one
part in 2n. Linearity is a measure of how much the output varies from a perfect
proportionality to the input binary number. The accuracy tells you how well the
proportionality matches a specified value. For our op-amp example, linearity and
accuracy would depend on how well the resistors matched the desired values.
Finally, the settling time is the time required for the output to get within some
specified amount of its final value. For the op-amp DAC, the settling time would
depend on the slew rate of the op-amp.

8.14 Analog to digital converters

While most computation and data analysis is done on digital computers, most
laboratory signals are analog. We therefore need a device that will change our lab
signals into binary numbers, and this device is called an analog to digital converter
(also written as A/D converter or ADC). Again, there are several different methods
to achieve this. Here we discuss a simple method that uses some of our previously
studied devices. The schematic for a staircase A/D is shown in Fig. 8.48 with
associated waveforms in Fig. 8.49.

Clock
A C

Counter

clear to start

n D/A
D

B

+
−

Vin

out

Figure 8.48 A staircase analog to digital converter.
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Vin Figure 8.49 Waveforms for
the staircase analog to digital
converter.

The voltage to be converted, Vin, which we take to be positive, is applied to the
(+) input of a comparator. To start the conversion, the binary counter is cleared
(set to zero). All n output lines of the counter (represented by a single slashed
line in Fig. 8.48) are thus low. The D/A converter then converts this zero binary
number to zero voltage, which is fed into the (−) input of the comparator. Since
Vin > 0, the comparator output is high. This allows the clock signal to pass through
the AND gate and be counted by the counter. As the count increases, the output
voltage, VD, of the D/A converter increases in a staircase fashion. Eventually, VD
becomes greater than Vin and this causes the comparator output to go low. This in
turn prevents the clock signal from passing through the AND gate so the counter
stops. At this point the binary number at the output of the counter is proportional
to the input voltage, and the conversion is complete.

8.15 Multiplexers and demultiplexers

Multiplexers and demultiplexers are devices that route signals. A multiplexer takes
one of several inputs and connects it to a single output. The input line that is
connected is determined by the binary number applied to the address lines. A
schematic of a multiplexer with four input lines is shown in Fig. 8.50. The two
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Figure 8.50 A simple four-to-one digital
multiplexer.

address lines can express numbers zero to three corresponding to the four inputs.
For example, if A1A0 = 10, then the logic level at D2 appears at the output pin Y .

Several general comments about multiplexers can be made. The number of
inputs on a multiplexer is not limited to four and is related to the number of address
lines. It takes N address lines to support 2N data lines. A digital multiplexer is
unidirectional: the digital level at the selected data line is transferred to the output
Y , but a digital level applied at Y will not be transfered to the selected data line.
Finally, most multiplexers have an Enable input, as shown in Fig. 8.50. If this
input is low, the multiplexer is enabled and the operation described above occurs.
If Enable is high, the output is not connected to any data line and has a high
impedance to ground. This allows one essentially to disconnect Y from whatever
follows it. The small circle on the Enable input reflects the fact that the logic is
reversed (a high level would normally be associated with turning a device on,
not off ).

As an application of the multiplexer, consider Fig. 8.51 which shows a parallel-
to-serial converter. The parallel data presented at the four input lines are sequentially
presented at the output as the counter driven by a clock oscillator steps through
its four binary numbers: A1A0 = 00, 01, 10, and 11. After this the counter resets
to zero and the process repeats. Although not shown, the Enable line could be
employed to prevent the repetition.

A multiplexer can also be used to implement a truth table. A simple example of
this is shown in Fig. 8.52. The truth table inputs A and B are connected to the address
lines and the correct output level for the truth table is achieved by connecting the
data input lines either high or low. Although this example would be trivial to
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Figure 8.51 Using a multiplexer to
perform parallel to serial conversion.
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Figure 8.52 Using a multiplexer to implement a truth table.

implement without a multiplexer (Output = A), this method of implementing truth
tables becomes more attractive (i.e., simpler and more compact) when the number
of inputs increases.

The opposite of a multiplexer is a demultiplexer, shown in Fig. 8.53. In this
case, the logic level at the single input D is routed to one of several output lines Y
in accordance with the binary number applied to the address lines. Unused output
lines have a high impedance to ground, as does the selected output if the Enable
input is high. As with the multiplexer, digital demultiplexers are unidirectional.

Finally, we note that there exist analog versions of the multiplexer that will pass
along an analog signal (i.e., one that can vary continuously) and not just high/low
logic levels. These devices are typically bidirectional so that signals can pass in
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Figure 8.53 A simple one-to-four digital
demultiplexer.

either direction as they would with a mechanical switch, hence the alternative name
analog switch. Also note that, since they are bidirectional, the same device can be
used either as a multiplexer or as a demultiplexer.

8.16 Memory chips

The information registers discussed earlier stored one bit of information, a single
high/low level. With the advent of large scale integration technologies it has become
possible to multiply this process thousands or millions of times on a single chip. A
representative device is shown in Fig. 8.54. We first note that the bits are stored in
groups called a data word. For our example, the word size is four bits, as seen by
the four data lines. The number of words in the memory is limited to and typically
set by the number of address lines. In our case, there are eight address lines and so
28 = 256 words of memory on the chip. The Enable pin must be low to either read
or write data. When it is high the data lines are essentially disconnected (have a
high impedance to ground). When the Write pin is low, logic levels on the data lines
are stored (written or input) to the memory word specified by the binary number
on the address lines. When the Write pin is high, logic levels stored at the memory
location specified by the address lines are placed on the data lines where they can
be read by or output to other devices.

Memory chips come in a huge variety of sizes and types and carry their own set of
acronyms and terminology. Volatile memory devices lose all stored information if
the electrical power supply is removed, while non-volatile memory does not. Static
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Figure 8.54 A 4-bit × 256 RAM.

memory stores data as long as the chip has power, while dynamic memory needs to
have the stored information periodically refreshed or re-written to maintain storage.
The example given above is an example of RAM or random access memory for
which any data word can be accessed via the address lines in an order chosen by
the user. In contrast, the shift register might be termed a sequential access memory
because the bits have to be accessed in order of their position within the register.

The information in a ROM or read only memory cannot be routinely changed
(written) but is intended as permanently stored information that will be read as
needed. The stored information might be set at the time of manufacture, or, with
a PROM or programmable ROM, set by the user using a special apparatus. With
some PROMs, this step can occur only once, while an EPROM can be Erased and
re-programmed.
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EXERCISES

1. Develop the truth table for the circuit shown in Fig. 8.55.

A

B
Out

Figure 8.55 Circuit for Problem 1.

2. Using only NAND gates, construct a circuit that will implement the following
logical expressions. Use Boolean algebra to simplify the expressions as much
as possible before you begin.
(a) (A · B) + (A · B) + (A · B) + (A · B)

(b) [(A · B) + C] · [(A · B) + D]
(c) [(A · B) · (A · B)] + (A · B)

(d) (1 + B) · (A · B · C)

3. Using only NOR gates, give circuits that are equivalent to each of the following:
AND, OR, NAND, and XOR.

4. Produce the truth table for the AND-OR-INVERT (AOI) gate shown in Fig. 8.56.

A
B

C
D

Out

Figure 8.56 Circuit for Problem 4.

5. Without a calculator, find the binary equivalents of the following base 10
numbers: 92, 66, 120, 511, 37, 255.

6. Using two-input logic gates, design an alarm system which lights an LED when
any of five doors is open. Assume that an open door gives a high logic level.

7. Using only NOR gates, produce a clocked flip-flop with the same functionality
as the one from Section 8.9.2. Use no more than five gates. Hint: try using the
same configuration with the NAND gates replaced with NORs.

8. Suppose we want a four-person vote counter that will output a high level when
three or four persons vote YES (indicated by a high input level). Produce a
Karnaugh map for this problem and give the resulting logic circuit. You may
use logic gates with any legal number of inputs.
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Appendix A: Selected answers to
exercises

Chapter 1
1. 1.27 �

3a. 100 W
5. I2 = 0.397 A
7. 667 �

9. 12.5 �

11. I3 = 1.20A
13. Vth = 0.025 V, with positive terminal on the right
15. V2 = 15 V
17. I1 = −1.096 A, I3 = 0.896 A, I5 = 0.086 A

Chapter 2
1. 1.33 μF
3. 8.3 μF
6. magnitude 11.3 k�, phase −27.95 degrees
8. 707 rad/s

10. RC = 5.5 × 10−5 s
12. |I| = 3.36 Arms, phase −9.89 degrees
13. Turns ratio is 1/10, primary current is 0.06 Arms, secondary current is 0.6 Arms
15. Output voltage will be 24 Vrms
16. The output is a 90 Hz sine wave with peak amplitude 0.946V0

Chapter 3
5a. If RL is shorted, the power into the 1

4 W resistor is 1.44 W, so the resistor burns
out

6a. Circuit gives a constant Vout for RL > 3 k�

8. Hint: my solution uses the LM317T voltage regulator

Chapter 4
2. Ib = 90.4 μA, Ic = 18.1 mA, Vce = 0.873 V
4. rbe = 1250 �, β = 180, rout = 5 k�

7. a = −3.97, g = −6.58
9. 1.067 Vpp
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Chapter 5
1c. K = 1 mA/V2, Vt = −3 V
2. Vgs = −1.35 V, Id = 2.71 mA, Vds = 4.16 V
4. a = −1.77, g = −16.1

Chapter 6
2. Vout = V3 + V4 − V1 − V2
3. I = Vin/(3R1)

4. Rmin = 560 �

7. 147 mV
8a. Vout = −7.2 V

Chapter 7
1. Output is a sawtooth with amplitude 5.1 V and period 5.1 ms

5. T = 2RC ln
(

1
5(2Vin+V−

sat)−V+
sat

1
5
(
2Vin+V+

sat
)−V+

sat

)
7a. ω = 1/RC

Chapter 8
1. Truth table is the same as AND
2a. Equivalent to 1
2c. Equivalent to A · B
5. 9210 = 10111002, 6610 = 10000102, 12010 = 11110002

www.electronic07.com



Appendix B: Solving a set of linear
algebraic equations

B.1 Introduction

When analyzing a network of linear components (e.g., resistors, capacitors, and
inductors), we typically obtain a set of linear algebraic equations for the unknown
currents in the circuit. Cramer’s Method, which is usually a topic in a linear algebra
course, gives a method for solving such problems. The method can be applied for
any number of unknown currents when we have an equal number of independent
linear equations. For purposes of illustration, we will take the case where there are
three unknown currents I1, I2, and I3 related by three linear equations. Since the
equations are linear, they can be cast in the form

a11I1 + a12I2 + a13I3 = b1 (B.1)

a21I1 + a22I2 + a23I3 = b2 (B.2)

a31I1 + a32I2 + a33I3 = b3 (B.3)

where the coefficients aij are known constants (real or complex) depending on the
values of the circuit components, Ii are the unknown currents, and bi are known
constants (usually depending on the voltages in the circuit). Here i is the row index
and j is the column index. This set of equations can be cast in matrix form as

⎛
⎜⎝a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞
⎟⎠
⎛
⎜⎝I1

I2
I3

⎞
⎟⎠ =

⎛
⎜⎝b1

b2
b3

⎞
⎟⎠ . (B.4)

B.2 Cramer’s Method

Cramer’s Method is one way of obtaining the solution for the unknown currents
Ii. A determinant D is formed from the coefficients aij of the unknown currents in
Eqs. (B.1) through (B.3). The unknown currents Ii are found by forming this same
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determinant with the ith column replaced by the constants bi and then dividing
by D. For our case we obtain

D =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ , (B.5)

I1 = 1
D

∣∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣ , (B.6)

I2 = 1
D

∣∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣∣ , (B.7)

and

I3 = 1
D

∣∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣ . (B.8)

It remains to evaluate the determinants. For a 3 × 3 square determinant we have∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = aei + bfg + cdh − ceg − bdi − afh. (B.9)

There are a few ways to remember this combination. One way is to replicate part
of the array in the horizontal direction and then take appropriate diagonal products.
For our 3 × 3 determinant we write∣∣∣∣∣∣∣

a b c a b
d e f d e
g h i g h

∣∣∣∣∣∣∣ . (B.10)

The expression in Eq. (B.9) is then obtained by starting with element a and moving
diagonally down and to the right, multiplying the coefficients to obtain aei. The
same thing is done with elements b and c to obtain bfg and cdh, respectively. We
then do the same thing moving diagonally down and to the left from elements c,
a, and b, obtaining ceg, afh, and bdi. These latter products are subtracted from the
sum of the former products, giving the desired result. The same method can be
used for any size square matrix.
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B.3 Using the TI-83

If the actual numeric values of the coefficients aij and the constants bi are known,
some calculators will perform for you the calculations indicated in Eqs. (B.5)
through (B.8). The following summarizes the necessary procedure for the popular
TI-83 calculator.

1. Define an n × (n + 1) matrix, where n is the number of unknown currents. The
first n columns contain the coefficients aij as in Eq. (B.5) and the last column
contains the constants bi. For our three-unknown example, the matrix elements
would be ⎛

⎜⎝a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

⎞
⎟⎠. (B.11)

This is accomplished on the TI-83 by hitting MATRIX, moving the cursor over
to EDIT, and moving the cursor down to one of the listed matrix names (A,
B, C, . . .). Hit ENTER and you will be prompted for the number of rows and
number of columns. Enter this information by moving the cursor and keying in
the numbers. Hit ENTER.

2. The cursor now has moved to the first row, first column of the defined matrix
display. Enter the appropriate number and hit ENTER. The cursor moves to
the next matrix element and you continue to input all the numbers from your
problem. When finished, hit QUIT.

3. Hit MATRIX, then select MATH and scroll down to rref and hit ENTER. Enter
the argument for the rref function by hitting MATRIX, selecting names, and
scrolling to the name of the matrix you defined in step 1. Hitting ENTER adds
this name to the rref function.

4. Now hit ENTER once more to run the rref function. The result is a new matrix
and the last column gives the numeric values of the unknown currents I1, I2, etc.



Appendix C: Inductively coupled
circuits

C.1 Introduction

Inductance is the expression of Faraday’s Law in electronic circuits. Recall that
Faraday’s Law says that if the magnetic flux through a closed loop changes in time,
a voltage will be induced in the loop. In equation form,

V = −d�

dt
. (C.1)

Here, � is the magnetic flux through the loop given most generally by

� =
∫

B · da (C.2)

where the integral is over a surface bounded by the closed loop.
We also know from Ampère’s Law that currents produce magnetic fields and

those fields encircle the current-carrying wires. Thus, in even the simplest cir-
cuit, we have currents producing magnetic fields and those fields producing a
magnetic flux through the circuit. If the current is changing in time, then the mag-
netic field changes in time as does the magnetic flux, giving rise to an induced
voltage by Eq. (C.1). Since the magnetic field produced by a current is directly
proportional to the current we can say V ∝ −dI/dt. In the case we have outlined,
where the flux through the circuit is caused by the currents in the circuit, the con-
stant of proportionality is called the self-inductance L (or simply the inductance).
The inductance depends on the size, shape, and other geometrical properties of
the circuit. In such cases, we include the effect of Faraday’s Law in the circuit
by writing

V = −L
dI
dt

(C.3)

for the voltage across the circuit inductance.
Suppose now that we have two circuits in close proximity. In this case, it is

possible for a current I1 in circuit 1 to produce a magnetic flux not only through
circuit 1, but also through circuit 2. A change in I1 will thus induce a voltage in
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both circuit 1 and circuit 2. Similarly, a changing current I2 in circuit 2 will induce
a voltage in both circuit 2 and circuit 1. We have already accounted for the voltage
induced in a circuit by its own current, but the induced voltage produced by the
current in a neighboring circuit requires a new concept, the mutual inductance M .
The voltage induced in circuit 1 by the variation of current in circuit 2 is given by

V1 = −M
dI2

dt
. (C.4)

Similarly, the voltage induced in circuit 2 by the variation of current in circuit 1 is
given by

V2 = −M
dI1

dt
. (C.5)

The constant M depends on the size, shape, and other geometrical properties of
both of the circuits and is thus a common or mutual property of the circuit pair.

The effect of mutual inductance can be illustrated by considering the circuit pair
shown in Fig. C.1. An arbitrary time-varying voltage V (t) drives a series resistor
and inductor in circuit 1. An independent, undriven circuit 2 consists of a resistor
R2 and an inductor L2 in series. The interaction between the two circuits described
above is represented by the symbol M .

Applying the voltage loop law to each circuit gives

V (t) − I1R1 − L1
dI1

dt
− M

dI2

dt
= 0 (C.6)

and
I2R2 + L2

dI2

dt
+ M

dI1

dt
= 0. (C.7)

Because of the mutual inductance, the current in each circuit depends on the current
in the other circuit. We cannot, therefore, solve one equation independently of the
other: Eqs. (C.6) and (C.7) are said to be coupled.

Since our two equations are linear, we now use our usual complex expo-
nential technique to solve them. Substituting in the complex sinusoidal voltage

V (t)
R1

I1

L1

I2

R2L2M
Figure C.1 Example of two circuits coupled
by mutual inductance.
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V (t) = Vpe jωt and currents I1 = Îp1e jωt and I2 = Îp2e jωt, we obtain1

Vp − Îp1R1 − jωL1Îp1 − jωMÎp2 = 0 (C.8)

and
Îp2R2 + jωL2Îp2 + jωMÎp1 = 0. (C.9)

We now have two algebraic equations for two unknowns, Îp1 and Îp2. Solving
Eq. (C.9) for Îp2 and plugging into Eq. (C.8) gives

Îp1 = Vp

[
R2 + jωL2

ω2(M2 − L1L2) + R1(R2 + jωL2) + jωR2L1

]
. (C.10)

Using this result to eliminate Îp1 from Eq. (C.9) yields

Îp2 = −jωMVp

ω2(M2 − L1L2) + R1(R2 + jωL2) + jωR2L1
. (C.11)

C.2 Transformers

Equations (C.10) and (C.11) are general but not very illuminating. A special case
of particular interest occurs for the case of an ideal transformer. In this case, L1 and
L2 are the inductances of the primary and secondary windings of the transformer.
The core of the transformer enhances the coupling between the two circuits by
guiding the magnetic field produced by the primary windings through the secondary
windings. One can show that the mutual and self-inductances of a transformer are
related by M2 = kL1L2, where 0 ≤ k ≤ 1. For an ideal transformer (with perfect
coupling) k = 1 and, thus, M2 − L1L2 = 0. Next, we assume the load resistance
is small compared to the impedance of the secondary windings so that R2 can be
ignored compared with jωL2. Under these conditions, Eq. (C.10) becomes

Vp = Îp1

[
R1 + R2

L1

L2

]
(C.12)

and Eq. (C.11) becomes

Vp = −Îp2

√
L1

L2

[
R1

L2

L1
+ R2

]
. (C.13)

1 The generalization of this method to an arbitrary periodic function is discussed in Section 2.8.
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Vp

R1

I1

(
N1
N2

)2R2 −(
N2
N1

)Vp

(
N2
N1

)2R1

I2

R2

Figure C.2 Equivalent circuits for Eqs. (C.14) and (C.15).

Finally, if we assume the two sets of windings have the same cross-sectional area
and the same length (not unreasonable since they are wound on the same core),
then L1/L2 = (N1/N2)

2, where N1 and N2 are the number of windings on the
primary and secondary coils, respectively (see Eq. (2.13)). Equations (C.12) and
(C.13) can then be re-written as

Vp = Îp1

[
R1 + R2

(
N1

N2

)2
]

(C.14)

and

− N2

N1
Vp = Îp2

[
R1

(
N2

N1

)2
+ R2

]
. (C.15)

Equations (C.14) and (C.15) describe the two equivalent circuits shown in
Fig. C.2. On the right, we see that the secondary circuit is driven by a voltage
of magnitude (N2/N1)Vp. This is in accordance with the first of the basic trans-
former equations, Eq. (2.126). Solving Eqs. (C.14) and (C.15) for Ip1 and Ip2 and
taking the quotient gives (after some algebra) Ip1/Ip2 = −N2/N1, in accordance
with Eq. (2.127). Finally, the circuits show that each resistor affects both circuits,
but that the resistor value is transformed: R2 affects the primary circuit but its value
is changed to (N1/N2)

2R2 (this is in accordance with Eq. (2.132)), while R1 affects
the secondary circuit with its value changed to (N2/N1)

2R1.
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A/D, see analog to digital converter
AC, definition of, 19, 27
ammeter, 13
Ampère’s Law, 30, 241
amperes, 1
amplifier

black box model for, 113
common-base, 123
common-collector, 122
common-drain, 147
common-emitter, 119
common-gate, 149
common-source, 145
current gain, 113
distortion, 127
emitter-follower, 122
feedback, 128
frequency response, 127
input impedance, 113
open-loop voltage gain, 113
output impedance, 113
source-follower, 147
voltage gain, 113

amplitude
decibels, 20
peak, 20
peak-to-peak, 20
rms, 20

amplitude modulation, 193
analog to digital converter, 228
anode, 78

band-pass filter, 53
band theory of solids, 69
Barkhausen criterion, 188
battery

ideal, 3
real, 23

BCD, see binary coded decimal
binary coded decimal, 223
binary counters, 220
binary numbers, 200
bipolar junction transistor, 104

α, 106
β, 106
AC equivalents for, 116
amplifier circuits, 110
band structure, 105
biased for linear active operation, 105
I–V characteristics, 107
inverter, 110
npn, 104
pnp, 104
switching circuit, 108

bit, data, 202
BJT, see bipolar junction transistor
Boolean algebra, 208
breakpoint frequency, 40

χ , reactance, 48
capacitors, 27

equivalent circuit laws for, 28
in parallel, 29
in series, 28
voltage rating, 27

carbon, resistivity of, 5
cathode, 78
center-tapped transformer, 87
channel length modulation, 145
charge carriers

majority, 73
minority, 73

clamp circuit, 84
clipper circuit, 84
CMOS, 212
complex numbers, 43

applied to LR circuit, 49
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complex numbers (cont.)
applied to LRC circuit, 52
applied to RC circuit, 45, 48
complex conjugate of, 45
magnitude of, 44
phase of, 44

complex Ohm’s Law, 48
conduction band, 71
copper, resistivity of, 5
Cramer’s Method, 16, 238
current, definition of, 1
current divider, 12
current limiting, 11
current source, definition of, 11

D/A, see digital to analog
converter

DC, definition of, 19
decoder, 224
DeMorgan’s theorems, 209
demultiplexer, 231
determinants, 16, 238
dielectric constant ε, 27
digital to analog converter, 227
diode

I–V characteristic of, 78
center-tapped full-wave rectifier, 88
clamp circuit, 84
clipper circuit, 84
full-wave bridge rectifier, 90
half-wave rectifier, 87
light emitting, 79
limiter circuit, 84
logic circuit, 86
rectifier, 86–90
simplified model for, 81
switch protector, 85
voltage dropper circuit, 83
zener, 92

doping a semiconductor, 72
duty cycle, 22

energy bands
definition of, 68
for a conductor, 69
for an insulator, 70
for a semiconductor, 71

energy levels
atomic, 68
for a solid, 68

EPROM, 233

farad, 27
Faraday’s Law, 30, 241
feedback, 128
FET, see field-effect transistor
field-effect transistor, 133

AC equivalents for, 144
as a switch, 140
I–V characteristics for, 136
junction, 134
metal oxide semiconductor, 136

depletion, 136
enhancement, 136

model equations for, 136
pinchoff, 136
transfer curve for, 140

filters
band-pass, 53
high-pass, 40, 51
low-pass, 41, 50
power supply, 90

LC or L-section, 92
RC π -section, 92
simple capacitor, 90

555 timer, 180
astable oscillator, 181
cascading, 185
monostable operation, 183

flip-flop
basic, 216
binary, 216
clocked, 217
gated, 217
J-K, 219
master-slave, 218
M-S, 218
R-S, 216

forbidden band, 70
Fourier analysis, 58

sawtooth wave, 60
square wave, 61
triangle wave, 61

frequency, 20
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frequency domain analysis, 37
frequency modulation, 197
full adder, 214
full-wave bridge rectifier, 90

ground, definition of, 83

h-parameter model, 118
half-adder, 214
half-power frequency, 40
half-wave rectifier, 87
henry, 30
hertz, 20
high-pass filter

LR, 51
RC, 40

holes in semiconductors, 72

impedance, 47
of capacitor, 47
of inductor, 47
of resistor, 47
reactive, 48
resistive, 48

impedance matching, 63
induced voltage, 30
inductance, 30

mutual, 242
self, 241

inductively coupled circuits, 241
inductors

in parallel, 30
in series, 30

information registers, 216
input resistance, 17
internal resistance of battery, 23

Karnaugh map, 206
KCL, see Kirchoff’s Current Law
Kirchoff’s Current Law, 2
Kirchoff’s Voltage Law, 2
KVL, see Kirchoff’s Voltage Law

LED, see light emitting diode
light emitting diode, 11, 79
limiter circuit, 84
load line method

applied to BJT switch, 109

applied to FET switch, 140
for diode circuit, 81
for zener diode circuit, 93

logic gates, 204–212
AND, 204
buffer, 205
inverter, 206
making, 211
NAND, 205
NOR, 205
OR, 204
XNOR, 206
XOR, 205

low-pass filter
LR, 50
RC, 41

LRC circuit, 52
critically damped response, 58
frequency response, 53
overdamped response, 57
underdamped response, 55

majority charge carriers, 73
matrix, 238
memory chips, 232
mesh loop method, 15
mhos, 144
minority charge carriers, 73
modulo-n, 223
multiplexer, 229

nichrome, resistivity of, 5
noise, 22
noise immunity, 200
Norton’s theorem, 10
n-type semiconductor, 72

Ohm’s Law, 4
ohms, 4
op-amp, see operational amplifier
open circuit, definition of, 10
operating point, 81, 112, 116, 141, 144
operational amplifier, 152

adder, 156
astable multivibrator, 165
buffer, 156
comparator, 153
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operational amplifier (cont.)
differential amplifier, 157
differentiator, 158
golden rules, 154
integrator, 158
inverting amplifier, 155
inverting input, 152
non-inverting amplifier, 156
non-inverting input, 152
open-loop gain, 153, 164
practical considerations, 159

bias currents, 159
frequency response, 164
input offset voltage, 162
slew rate limiting, 162

saturation voltage, 153
voltage follower, 156

oscillator
relaxation, 171

555 astable, 181
SCR sawtooth, 171
transistor astable, 174

sinusoidal, 185
crystal, 192
Hartley, 191
LC tank circuit, 190
RC, 186
stability, 188
Wein bridge, 189

parallel data transmission, 202
period T , 20
permeability μ, 30
phase, 20
p-n junction

biased, 76
breakdown, 78
depletion region, 74
energy levels, 74
forward bias, 77
photon absorption, 80
photon emission, 80
reverse bias, 76

potential difference, 1
potentiometer, 5
power, general definition of, 3
power transfer optimization, 63

prefixes, 3
PROM, 233
p-type semiconductor, 73
pulse train, 22
pulse width, 22

Q point, 112
quiescent point, 112

RAM, 233
ramp, 22
RC circuit, 30–43

charging, 32
differentiator, 42
discharging, 32
high-pass filter, 40
integrator, 43
low-pass filter, 41
negative phase shifter, 41
positive phase shifter, 40
response to sine wave, 37
response to square wave, 33

RC time constant, 32
reactance χ , 48
rectifier

diode full-wave, 87, 90
diode half-wave, 86
silicon controlled, 97

regulation, 91
regulator

fixed voltage, 96
variable voltage, 97

repetition time, 20
resistivity ρ, 5
resistor

color bands, 5
current limiting, 11
equivalent circuit laws for, 6
I–V characteristic of, 4
in parallel, 7
in series, 7
power laws for, 5
power rating, 5
shunt, 13

resonant frequency, 53
rheostat, 5
ringing, 56
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ripple factor, 91
roll off, 127
ROM, 233

SCR, see silicon controlled rectifier
self-inductance, 30, 241
serial data transmission, 202
seven-segment display, 223
shift register, 224

digital waveform synthesis, 225
scrolling display, 224

short circuit, definition, 10
shunt, 13
siemens, 144
silicon controlled rectifier, 97

as a motor control, 99
as a switch, 98
I–V characteristics for, 97

silver, resistivity of, 5
sinusoidal signal, 20
square wave, 21
standard method, 14

thermal energy, 70
thermal transitions, 70
Thevenin’s theorem, 10
TI-83, 240
time constant, 32
time domain analysis, 37

transcendental equation, 80
transconductance, 144
transformer, 61, 243

center tapped, 87
impedance matching, 63
primary windings, 62
secondary windings, 62
turns ratio, 62

triangle wave, 22
TTL, 212

universal DC bias circuit, 111, 142

valance band, 71
voltage, definition of, 1
voltage divider, 12
voltage dropper circuit, 83
voltage source, definition of, 11
voltmeter, 13
volts, 1

watts, 3
word, data, 232

zener diode, 92
as regulator, 93
limiter circuit, 95
voltage indicator circuit, 95
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